247 research outputs found

    Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils

    Get PDF
    Arctic soils play an important role in Earth's climate system, as they store large amounts of carbon that, if released, could strongly increase greenhouse gas levels in our atmosphere. Most research to date has focused on how the turnover of organic matter in these soils is regulated by abiotic factors, and few studies have considered the potential role of biotic regulation. However, arctic soils are currently missing important groups of soil organisms, and here, we highlight recent empirical evidence that soil organisms' presence or absence is key to understanding and predicting future climate feedbacks from arctic soils. We propose that the arrival of soil organisms into arctic soils may introduce "novel functions", resulting in increased rates of, for example, nitrification, methanogenesis, litter fragmentation, or bioturbation, and thereby alleviate functional limitations of the current community. This alleviation can greatly enhance decomposition rates, in parity with effects predicted due to increasing temperatures. We base this argument on a series of emerging experimental evidence suggesting that the dispersal of until-then absent micro-, meso-, and macroorganisms (i.e. from bacteria to earthworms) into new regions and newly thawed soil layers can drastically affect soil functioning. These new observations make us question the current view that neglects organism-driven "alleviation effects" when predicting future feedbacks between arctic ecosystems and our planet's climate. We therefore advocate for an updated framework in which soil biota and the functions by which they influence ecosystem processes become essential when predicting the fate of soil functions in warming arctic ecosystems

    Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats

    Get PDF
    Palsa peats are unique northern ecosystems formed under an arctic climate and characterized by a high biodiversity and sensitive ecology. The stability of the palsas are seriously threatened by climate warming which will change the permafrost dynamic and induce a degradation of the mires. We used stable carbon isotope depth profiles in two palsa mires of Northern Sweden to track environmental change during the formation of the mires. Soils dominated by aerobic degradation can be expected to have a clear increase of carbon isotopes (ÎŽ13C) with depth, due to preferential release of 12C during aerobic mineralization. In soils with suppressed degradation due to anoxic conditions, stable carbon isotope depth profiles are either more or less uniform indicating no or very low degradation or depth profiles turn to lighter values due to an enrichment of recalcitrant organic substances during anaerobic mineralisation which are depleted in 13C. The isotope depth profile of the peat in the water saturated depressions (hollows) at the yet undisturbed mire Storflaket indicated very low to no degradation but increased rates of anaerobic degradation at the Stordalen site. The latter might be induced by degradation of the permafrost cores in the uplifted areas (hummocks) and subsequent breaking and submerging of the hummock peat into the hollows due to climate warming. Carbon isotope depth profiles of hummocks indicated a turn from aerobic mineralisation to anaerobic degradation at a peat depth between 4 and 25 cm. The age of these turning points was 14C dated between 150 and 670 yr and could thus not be caused by anthropogenically induced climate change. We found the uplifting of the hummocks due to permafrost heave the most likely explanation for our findings. We thus concluded that differences in carbon isotope profiles of the hollows might point to the disturbance of the mires due to climate warming or due to differences in hydrology. The characteristic profiles of the hummocks are indicators for micro-geomorphic change during permafrost up heaving

    Spatial and temporal variations in Pb concentrations and isotopic composition in road dust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK

    Get PDF
    Results are presented for a study of spatial distributions and temporal trends in concentrations of lead (Pb) from different sources in soil and vegetation of an arable farm in central Scotland in the decade since the use of leaded petrol was terminated. Isotopic analyses revealed that in all of the samples analysed, the Pb conformed to a binary mixture of petrol Pb and Pb from industrial or indigenous geological sources and that locally enhanced levels of petrol Pb were restricted to within 10 m of a motorway and 3 m of a minor road. Overall, the dominant source of Pb was historical emissions from nearby industrial areas. There was no discernible change in concentration or isotopic composition of Pb in surface soil or vegetation over the decade since the ban on the sale of leaded petrol. There was an order of magnitude decrease in Pb concentrations in road dust over the study period, but petrol Pb persisted at up to 43% of the total Pb concentration in 2010. Similar concentrations and spatial distributions of petrol Pb and non petrol Pb in vegetation in both 2001 and 2010, with enhanced concentrations near roads, suggested that redistribution of previously deposited material has operated continuously over that period, maintaining a transfer pathway of Pb into the biosphere. The results for vegetation and soil transects near minor roads provided evidence of a non petrol Pb source associated with roads/traffic, but surface soil samples from the vicinity of a motorway failed to show evidence of such a source

    Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils

    Get PDF
    Arctic soils play an important role in Earth's climate system, as they store large amounts of carbon that, if released, could strongly increase greenhouse gas levels in our atmosphere. Most research to date has focused on how the turnover of organic matter in these soils is regulated by abiotic factors, and few studies have considered the potential role of biotic regulation. However, arctic soils are currently missing important groups of soil organisms, and here, we highlight recent empirical evidence that soil organisms' presence or absence is key to understanding and predicting future climate feedbacks from arctic soils. We propose that the arrival of soil organisms into arctic soils may introduce “novel functions”, resulting in increased rates of, for example, nitrification, methanogenesis, litter fragmentation, or bioturbation, and thereby alleviate functional limitations of the current community. This alleviation can greatly enhance decomposition rates, in parity with effects predicted due to increasing temperatures. We base this argument on a series of emerging experimental evidence suggesting that the dispersal of until-then absent micro-, meso-, and macroorganisms (i.e. from bacteria to earthworms) into new regions and newly thawed soil layers can drastically affect soil functioning. These new observations make us question the current view that neglects organism-driven “alleviation effects” when predicting future feedbacks between arctic ecosystems and our planet's climate. We therefore advocate for an updated framework in which soil biota and the functions by which they influence ecosystem processes become essential when predicting the fate of soil functions in warming arctic ecosystems.</p

    Norway spruce postglacial recolonization of Fennoscandia

    Get PDF
    Contrasting theories exist regarding how Norway spruce recolonized Fennoscandia after the last glaciation. Here, the authors provide evidences from sedimentary ancient DNA and modern population genomics to support that Norway spruce was present in southern Fennoscandia shortly after deglaciation and the early Holocene migration from the east. Contrasting theories exist regarding how Norway spruce (Picea abies) recolonized Fennoscandia after the last glaciation and both early Holocene establishments from western microrefugia and late Holocene colonization from the east have been postulated. Here, we show that Norway spruce was present in southern Fennoscandia as early as 14.7 +/- 0.1 cal. kyr BP and that the millennia-old clonal spruce trees present today in central Sweden likely arrived with an early Holocene migration from the east. Our findings are based on ancient sedimentary DNA from multiple European sites (N = 15) combined with nuclear and mitochondrial DNA analysis of ancient clonal (N = 135) and contemporary spruce forest trees (N = 129) from central Sweden. Our other findings imply that Norway spruce was present shortly after deglaciation at the margins of the Scandinavian Ice Sheet, and support previously disputed finds of pollen in southern Sweden claiming spruce establishment during the Lateglacial.Peer reviewe

    Foliar lead uptake by lettuce exposed to atmospheric fallouts

    Get PDF
    Metal uptake by plants occurs by soil−root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce (Lactuca sativa) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 ± 50 mg Pb kg−1 (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination
    • 

    corecore