463 research outputs found
Modeling the chemical, diffusional, and thermal processes of a microreactor
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 34).This thesis seeks to create a high fidelity model of the multiphysics present in a typical microreactor using propane combustion as a fuel source. The system is fully described by energy, momentum, and mass equations, all of which are highly coupled by their dependence on temperature. Using the work done on the S[mu]RE IV microreactor as a basis, this undergraduate thesis implements the relevant equations of a general microreactor model in the finite element software known as COMSOL Multiphysics. Combustion was modeled as a surface reaction occurring on the microchannel walls, with rates modeled based on Arrhenius assumptions. Furthermore, a compressible Navier-Stokes equation was applied to describe the gas flow. Finally, Maxwell-Stefan equations were implemented in order to capture the concentration and temperature dependence of the various species diffusivities. For characterizing the thermal profile, convective, conductive, and radiataive heat transfer modes were all included. However, because this ideal model faced convergence issues due to the complexity of the Maxwell-Stefan diffusion equations, a simpler model is presented. The simpler model assumed general convective and conductive mass transfer, with diffusivity values typical of gas-gas mass transfer utilized. Furthermore, the flow was also simplified to be described by the incompressible Navier- Stokes equation. Temperatures from this simplified simulation ranged from 850-856K as compared to previous results, which showed a range of approximately 850-920K. Furthermore, propane concentration only fell from 0.150 mol m3 to 0.100 mol m 3 while previous results showed complete consumption for the same initial amount. These differences were anticipated and are thereby explained by the simplifications made. Finally, several steps are outlined for future investigation as to the problems facing the ideal model. These steps include analysis not only of the equations implemented by COMSOL, but also of numerical factors that could hinder convergence. Fixing the ideal model should allow for application to various projects that would require chemical or thermal data of such a microreactor.by James Emanuel Silva.S.B
PNIPAM hydrogel micro/nanostructures for bulk fluid and droplet control
Poly(N-isopropylacrylamide) (PNIPAM) belongs to a class of stimuli-responsive materials known as âsmartâ polymers. When cast in the form of a hydrogel, PNIPAMâs lower critical solution temperature (LCST) of 32°C serves as a threshold for volumetric change. For solution temperatures below LCST, PNIPAM hydrogels exist as swollen, hydrophilic networks of polymer and water, spontaneously expelling the bound water molecules to shrink (and become increasingly hydrophobic) as temperature increases beyond LCST.
This thesis centers on PNIPAM hydrogel layers grafted along the inner diameter of glass capillaries in order to form a temperature-responsive gating mechanism that spontaneously seals for solution temperatures below LCST. Surprisingly, very thin layers (10-20”m) of PNIPAM have dramatic effects on bulk fluid flow through the capillary due to complex interactions at the swelling interface. Specifically, for the case of capillary pressure driven flow, the swelling PNIPAM interface gives rise to "stick-and-slip" motion for bulk flow. Experiments explore the extent of this phenomenon, while a theoretical framework is proposed to model how the evolving gel interface pins the contact line.
Additionally, an exploratory segment of this work examines the ways in which PNIPAM hydrogel nanoarrays can be synthesized via scalable template methods. Nanostructured PNIPAM films exhibit dramatic changes in surface properties with temperature, characterized by very low contact angles (~10°) below LCST, and very high ones (~160°) above LCST. Results for several methods are presented with lessons learned to guide future development of surfaces with temperature-responsive wetting properties.M.S
The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a HostâPathogen Arms Race in Birds
The vertebrate toll-like receptor (TLRs) supergene family is a first-line immune defense against viral and non-viral pathogens. Here, comparative evolutionary-genomics of 79 vertebrate species (8 mammals, 48 birds, 11 reptiles, 1 amphibian, and 11 fishes) revealed differential gain/loss of 26 TLRs, including 6 (TLR3, TLR7, TLR8, TLR14, TLR21, and TLR22) that originated early in vertebrate evolution before the diversification of Agnatha and Gnathostomata. Subsequent dynamic gene gain/loss led to lineage-specific diversification with TLR repertoires ranging from 8 subfamilies in birds to 20 in fishes. Lineage-specific loss of TLR8-9 and TLR13 in birds and gains of TLR6 and TLR10-12 in mammals and TLR19-20 and TLR23-27 in fishes. Among avian species, 5â10% of the sites were under positive selection (PS) (omega 1.5â2.5) with radical amino-acid changes likely affecting TLR structure/functionality. In non-viral TLR4 the 20 PS sites (posterior probability PP \u3e 0.99) likely increased ability to cope with diversified ligands (e.g., lipopolysaccharide and lipoteichoic). For viral TLR7, 23 PS sites (PP \u3e 0.99) possibly improved recognition of highly variable viral ssRNAs. Rapid evolution of the TLR supergene family reflects the hostâpathogen arms race and the coevolution of ligands/receptors, which follows the premise that birds have been important vectors of zoonotic pathogens and reservoirs for viruses
Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses
The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The ParanĂĄ State Genome ProgrammeâGENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species
An estimate of the number of tropical tree species
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisherâs alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between âŒ40,000 and âŒ53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of âŒ19,000â25,000 tree species. Continental Africa is relatively depauperate with a minimum of âŒ4,500â6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa
Evenness mediates the global relationship between forest productivity and richness
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richnessâproductivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversityâecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions
Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences
The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009aâb; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported
by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on
18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based
researchers who signed it in the short time span from 20 September to 6 October 2016
Native diversity buffers against severity of non-native tree invasions
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
The global biogeography of tree leaf form and habit
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4âGt), 54% (335.7âGt), 22% (136.2âGt) and 3% (18.7âGt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling
- âŠ