94 research outputs found

    Can Galactic Observations Be Explained by a Relativistic Gravity Theory?

    Get PDF
    We consider the possibility of an alternative gravity theory explaining the dynamics of galactic systems without dark matter. From very general assumptions about the structure of a relativistic gravity theory we derive a general expression for the metric to order (v/c)2(v/c)^2. This allows us to compare the predictions of the theory with various experimental data: the Newtonian limit, light deflection and retardation, rotation of galaxies and gravitational lensing. Our general conclusion is that the possibility for any gravity theory to explain the behaviour of galaxies without dark matter is rather improbable.Comment: 12p, REVTeX 3.

    The Star-Forming Galaxy Contribution to the Cosmic MeV and GeV Gamma-Ray Background

    Full text link
    While star-forming galaxies could be major contributors to the cosmic GeV Îł\gamma-ray background, they are expected to be MeV-dim because of the "pion bump" falling off below ~100 MeV. However, there are very few observations of galaxies in the MeV range, and other emission processes could be present. We investigate the MeV background from star-forming galaxies by running one-zone models of cosmic ray populations, including Inverse Compton and bremsstrahlung, as well as nuclear lines (including 26^{26}Al), emission from core-collapse supernovae, and positron annihilation emission, in addition to the pionic emission. We use the Milky Way and M82 as templates of normal and starburst galaxies, and compare our models to radio and GeV--TeV Îł\gamma-ray data. We find that (1) higher gas densities in high-z normal galaxies lead to a strong pion bump, (2) starbursts may have significant MeV emission if their magnetic field strengths are low, and (3) cascades can contribute to the MeV emission of starbursts if they emit mainly hadronic Îł\gamma-rays. Our fiducial model predicts that most of the unresolved GeV background is from star-forming galaxies, but this prediction is uncertain by an order of magnitude. About ~2% of the claimed 1 MeV background is diffuse emission from star-forming galaxies; we place a firm upper limit of <~10% based on the spectral shape of the background. The star-formation contribution is constrained to be small, because its spectrum is peaked, while the observed background is steeply falling with energy through the MeV-GeV range.Comment: Published in ApJ, 27 pages, emulateapj format. Readers may be interested in the concurrent paper by Chakraborty and Fields (arXiv:1206.0770), a calculation of the Inverse Compton background from star-forming galaxie

    Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings

    Get PDF
    Synthesis of heat shock proteins (HSPs) in response to heat shock (HS) is essential for thermotolerance. The effect of a Ca2+ chelator, EGTA, was investigated before a lethal HS treatment in soybean (Glycine max) seedlings with acquired thermotolerance induced by preheating. Such seedlings became non-thermotolerant with EGTA treatment. The addition of Ca2+, Sr2+ or Ba2+ to the EGTA-treated samples rescued the seedlings from death by preventing the increased cellular leakage of electrolytes, amino acids, and sugars caused by EGTA. It was confirmed that EGTA did not affect HSP accumulation and physiological functions but interfered with the recovery of HS-released Ca2+ concentration which was required for thermotolerance. Pectin methylesterase (PME, EC 3.1.1.11), a cell wall remodelling enzyme, was activated in response to HS, and its elevated activity caused an increased level of demethylesterified pectin which was related to the recovery of the HS-released Ca2+ concentration. Thus, the recovery of HS-released Ca2+ in Ca2+-pectate reconstitution through PME activity is required for cell wall remodelling during HS in soybean which, in turn, retains plasma membrane integrity and co-ordinates with HSPs to confer thermotolerance

    Gamma Ray Bursts as standard candles to constrain the cosmological parameters

    Get PDF
    Gamma Ray Bursts (GRBs) are among the most powerful sources in the Universe: they emit up to 10^54 erg in the hard X-ray band in few tens of seconds. The cosmological origin of GRBs has been confirmed by several spectroscopic measurements of their redshifts, distributed in the range 0.1-6.3. These two properties make GRBs very appealing to investigate the far Universe. The energetics implied by the observed fluences and redshifts span at least four orders of magnitudes. Therefore, at first sight, GRBs are all but standard candles. But there are correlations among some observed quantities which allow us to know the total energy or the peak luminosity emitted by a specific burst with a great accuracy. Through these correlations, GRBs become "known" candles to constrain the cosmological parameters. One of these correlation is between the rest frame peak spectral energy E_peak and the total energy emitted in gamma--rays E_gamma, properly corrected for the collimation factor. Another correlation, discovered very recently, relates the total GRB luminosity L_iso, its peak spectral energy E_peak and a characteristic timescale T_0.45, related to the variability of the prompt emission. It is based only on prompt emission properties, it is completely phenomenological, model independent and assumption--free. The constraints found through these correlations on the Omega_M and Omega_Lambda parameters are consistent with the concordance model. The present limited sample of bursts and the lack of low redshift events, necessary to calibrate these correlations, makes the cosmological constraints obtained with GRBs still large compared to those obtained with other cosmological probes (e.g. SNIa or CMB). However, the newly born field of GRB--cosmology is very promising for the future.Comment: 39 pages, 23 figures, 2 tables. Accepted for publication in the New Journal of Physics focus issue, "Focus on Gamma--Ray bursts in the Swift Era" (Eds. D. H. Hartmann, C. D. Dermer, J. Greiner

    Essentially biased: why people are fatalistic about genes

    Get PDF
    We propose that people are genetic essentialists—that is, they tend to think of genetic attributions as being immutable, of a specific etiology, natural, and dividing people into homogenous and discrete groups. Although there are rare conditions where genes operate in these kinds of deterministic ways, people overgeneralize from these to the far more common conditions where genes are not at all deterministic. These essentialist biases are associated with some harmful outcomes such as racism, sexism, pessimism in the face of illnesses, political polarization, and support for eugenics, while at the same time they are linked with increased tolerance and sympathy for gay rights, mental illness, and less severe judgments of responsibility for crime. We will also discuss how these essentialist biases connect with the burgeoning direct-to-consumer genomics industry and various kinds of genetic engineering. Overall, these biases appear rather resistant to efforts to reduce them, although genetics literacy predicts weaker essentialist tendencies

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore