30 research outputs found

    Star formation around RCW 120, the perfect bubble

    Full text link
    We take advantage of the very simple morphology of RCW 120 -- a perfect bubble -- to understand the mechanisms triggering star formation around an HII region and to establish what kind of stars are formed there. We present 870 microns observations of RCW 120, obtained with the APEX-LABOCA camera. These show the distribution of cold dust, and thus of neutral material. We use Spitzer-MIPS observations at 24 and 70 microns to detect the young stellar objects (YSOs) present in this region and to estimate their evolutionary stages. A layer of dense neutral material surrounds the HII region, having been swept up during the region's expansion. This layer has a mass greater than 2000 solar masses and is fragmented, with massive fragments elongated along the ionization front (IF). We measured the 24 microns flux of 138 sources. Of these, 39 are Class I or flat-spectrum YSOs observed in the direction of the collected layer. We show that several triggering mechanisms are acting simultaneously in the swept-up shell, where they form a second generation of stars. No massive YSOs are detected. However, a massive, compact 870 microns core lies adjacent to the IF. A 70 microns source with no 24 microns counterpart is detected at the same position. This source is a likely candidate for a Class 0 YSO. Also at 24 microns, we detect a chain of about ten regularly spaced Class I or flat spectrum sources, parallel to the IF, in the direction of the most massive fragment. We suggest that the formation of these YSOs is the result of Jeans gravitational instabilities in the collected layer. Finally, the 870 microns emission, the 24 microns emission, and the Halpha emission show the existence of an extended and partially ionized photodissociation region around RCW 120.Comment: 14 pages, 17 figure

    The HII region G35.673-00.847: another case of triggered star formation?

    Get PDF
    As part of a systematic study that we are performing with the aim to increase the observational evidence of triggered star formation in the surroundings of HII regions, we analyze the ISM around the HII region G35.673-00.847, a poorly studied source. Using data from large-scale surveys: Two Micron All Sky Survey, Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), MIPSGAL, Galactic Ring Survey (GRS), VLA Galactic Plane Survey (VGPS), and NRAO VLA Sky Survey (NVSS) we performed a multiwavelength study of G35.673-00.847 and its surroundings. The mid IR emission, shows that G35.673-00.847 has an almost semi-ring like shape with a cut towards the galactic west. The radius of this semi-ring is about 1.5' (~1.6 pc, at the distance of ~3.7 kpc). The distance was estimated from an HI absorption study and from the analysis of the molecular gas. Indeed, we find a molecular shell composed by several clumps distributed around the HII region, suggesting that its expansion is collecting the surrounding material. We find several YSO candidates over the molecular shell. Finally, comparing the HII region dynamical age and the fragmentation time of the molecular shell, we discard the collect and collapse as the mechanism responsible for the YSOs formation, suggesting other processes such as radiative driven implosion and/or small-scale Jeans gravitational instabilities.Comment: Accepted for publication in A&A, 18 October 2010. Some figures were degraded to reduce file siz

    A multiwavelength study of the star forming region IRAS 18544+0112

    Full text link
    This work aims at investigating the molecular and infrared components in the massive young stellar object (MYSO) candidate IRAS 18544+0112. The purpose is to determine the nature and the origin of this infrared source. To analyze the molecular gas towards IRAS 18544+0112, we have carried out observations in a 90" x 90" region around l = 34.69, b = -0.65, using the Atacama Submillimeter Telescope Experiment (ASTE) in the 12CO J=3-2, 13CO J=3-2, HCO+ J=4-3 and CS J=7-6 lines with an angular resolution of 22". The infrared emission in the area has been analyzed using 2MASS and Spitzer public data. From the molecular analysis, we find self-absorbed 12CO J=3-2 profiles, which are typical in star forming regions, but we do not find any evidence of outflow activity. Moreover, we do not detect either HCO+ J=4-3 or CS J=7-6 in the region, which are species normally enhanced in molecular outflows and high density envelopes. The 12CO J=3-2 emission profile suggests the presence of expanding gas in the region. The Spitzer images reveal that the infrared source has a conspicuous extended emission bright at 8 um with an evident shell-like morphology of ~ 1.5 arcmin in size (~ 1.4 pc at the proposed distance of 3 kpc) that encircles the 24 um emission. The non-detection of ionized gas related to IRAS 18544+0112, together with the fact that it is still embedded in a molecular clump suggest that IRAS 18544+0112, has not reached the UCHII region stage yet. Based on near infrared photometry we search for YSO candidates in the region and propos that 2MASS 18565878+0116233 is the infrared point source associated with IRAS 18544+0112. Finally, we suggest that the expansion of a larger nearby HII region, G034.8-0.7, might be related to the formation of IRAS 18544+0112.Comment: 14 pages, accepted for publication in A&A. Figures degraded to reduce file siz

    Triggered massive-star formation on the borders of Galactic HII regions. IV- Star formation at the periphery of Sh2-212

    Full text link
    Aims: We wish to establish whether sequential star formation is taking place at the periphery of the Galactic HII region Sh2-212. Methods: We present CO millimetre observations of this region obtained at the IRAM 30-m telescope to investigate the distribution of associated molecular material. We also use deep JHK observations obtained at the CFHT to study the stellar content of the region, and radio observations obtained at the VLA to look for the presence of an ultra-compact (UC) HII region and for maser emission. Results: In the optical, Sh2-212 is spherically symmetric around its central exciting cluster. This HII region is located along a molecular filament. A thin, well-defined half ring of molecular material surrounds the brightest part of the HII region at the rear and is fragmented. The most massive fragment (~200 solar masses) contains a massive young stellar object displaying a near-IR excess; its spectral energy distribution indicates a high-mass (~14solar masses), high-temperature (~30000K), and high-luminosity (~17000 solar luminosities) source. This object ionizes a UC HII region. Conclusions: Sh2-212 is a good example of massive-star formation triggered via the collect and collapse process. The massive YSO observed at its periphery is a good candidate for a massive star formed in isolation.Comment: 12 pages, 14 figures. To be published in A&

    Star formation triggered by HII regions in our Galaxy: First results for N49 from the Herschel infrared survey of the Galactic plane

    Get PDF
    It has been shown that by means of different physical mechanisms the expansion of HII regions can trigger the formation of new stars of all masses. This process may be important to the formation of massive stars but has never been quantified in the Galaxy. We use Herschel-PACS and -SPIRE images from the Herschel Infrared survey of the Galactic plane, Hi-GAL, to perform this study. We combine the Spitzer-GLIMPSE and -MIPSGAL, radio-continuum and sub-millimeter surveys such as ATLASGAL with Hi-GAL to study Young Stellar Objects (YSOs) observed towards Galactic HII regions. We select a representative HII region, N49, located in the field centered on l=30 degr observed as part of the Hi-GAL Science Demonstration Phase, to demonstrate the importance Hi-GAL will have to this field of research. Hi-GAL PACS and SPIRE images reveal a new population of embedded young stars, coincident with bright ATLASGAL condensations. The Hi-GAL images also allow us, for the first time, to constrain the physical properties of the newly formed stars by means of fits to their spectral energy distribution. Massive young stellar objects are observed at the borders of the N49 region and represent second generation massive stars whose formation has been triggered by the expansion of the ionized region. Hi-GAL enables us to detect a population of young stars at different evolutionary stages, cold condensations only being detected in the SPIRE wavelength range. The far IR coverage of Hi-GAL strongly constrains the physical properties of the YSOs. The large and unbiased spatial coverage of this survey offers us a unique opportunity to lead, for the first time, a global study of star formation triggered by HII regions in our Galaxy.Comment: 4 pages, 2 figures, accepted by A&A (Special issue on Herschel first results

    Spitzer/IRAC view of Sh 2-284: Searching for evidence of triggered star formation in an isolated region in the outer Milky Way

    Get PDF
    Using Spitzer/IRAC observations of a region to be observed by the CoRoT satellite, we have unraveled a new complex star-forming region at low metallicity in the outer Galaxy. We perform a study of S284 in order to outline the chain of events in this star-forming region. We used four-band Spitzer/IRAC photometry as well as Halpha imaging obtained with INT/WFC. Combining these data with the optical photometry obtained in the frame of CoRoTs preparation and the 2MASS catalog we analysed the properties and distribution of young stellar objects (YSOs) associated with point-like sources. We also studied the SEDs of regions of extended emission, complementing our dataset with IRAS and MSX data. We find that S284 is unique in several ways: it is very isolated at the end of a spiral arm and both the diffuse dust and ionized emission are remarkably symmetric. We have partially resolved the central clusters of the three bubbles present in this region. Despite the different scales present in its multiple-bubble morphology, our study points to a very narrow spread of ages among the powering high-mass clusters. In contrast, the particular sawtooth structure of the extended emission at the rim of each ionized bubble harbours either small lower-mass clusters with a younger stellar population or individual young reddened protostars. In particular, triggered star formation is considered to be at work in these regions.Comment: Accepted by A&A. 13 pages, 10 figures, 2 Table

    A multi-wavelength census of stellar contents in the young cluster NGC 1624

    Get PDF
    We present a comprehensive multi-wavelength analysis of the young cluster NGC 1624 associated with the H II region Sh2-212 using optical UBVRI photometry, optical spectroscopy and GMRT radio continuum mapping along with the near-infrared (NIR) JHK archival data. Reddening E(B-V) and distance to the cluster are estimated to be 0.76 - 1.00 mag and 6.0 +/- 0.8 kpc, respectively. Present analysis yields a spectral class of O6.5V for the main ionizing source of the region. The distribution of YSOs in (J-H)/ (H-K) NIR colour-colour diagram shows that a majority of them have A_V ≤\le 4 mag. Based on the NIR excess characteristics, we identified 120 probable candidate YSOs in this region which yield a disk frequency of ~ 20%. These YSOs are found to have an age spread of ~ 5 Myr with a median age of ~ 2-3 Myr and a mass range of ~ 0.1 - 3.0 M⊙M_\odot. A significant number of YSOs are located close to the cluster centre and we detect an enhanced density of reddened YSOs located/projected close to the molecular clumps at the periphery of NGC 1624. This indicates that the YSOs located within the cluster core are relatively older in comparison to those located/projected near the clumps. From the radio continuum flux, spectral class of the ionizing source of the ultra-compact H II region at the periphery of Sh2-212 is estimated to be ~ B0.5V. From optical data, slope of the mass function (MF) Γ\Gamma, in the mass range 1.2≤M/M⊙<271.2 \le M/M_{\odot}<27 can be represented by a single power law with a slope -1.18 +/- 0.10, whereas the NIR data in the mass range 0.65≤M/M⊙<270.65 \le M/M_{\odot}<27 yields Γ\Gamma = -1.31 +/- 0.15. The slope of the K-band luminosity function (KLF) for the cluster is found to be 0.30 +/- 0.06 which is in agreement with the values obtained for other young clusters.Comment: Accepted for publication in MNRA

    Triggered star formation on the borders of the Galactic HII region RCW 82

    Full text link
    We are engaged in a multi-wavelength study of several Galactic HII regions that exhibit signposts of triggered star formation on their borders, and where the collect and collapse process could be at work. When addressing the question of triggered star formation it is critically important to ensure the real association between the ionized gas and the neutral material observed nearby. In this paper we stress this point, and present CO observations of the RCW 82 star forming region. The velocity distribution of the molecular gas is combined with the study of young stellar objects (YSOs) detected in the direction of RCW 82. We discuss the YSO's evolutionary status using near- and mid-IR data. The spatial and velocity distributions of the molecular gas are used to discuss the possible scenarios for the star formation around RCW 82.Comment: 17 pages, 20 figures. Accepted by A&

    The statistics of triggered star formation: an overdensity of massive YSOs around Spitzer bubbles

    Get PDF
    We present a detailed statistical study of massive star formation in the environment of 322 Spitzer mid-infrared bubbles by using the RMS survey for massive Young Stellar Objects (YSOs). Using a combination of simple surface density plots and a more sophisticated angular cross-correlation function analysis we show that there is a statistically significant overdensity of RMS YSOs towards the bubbles. There is a clear peak in the surface density and angular cross-correlation function of YSOs projected against the rim of the bubbles. By investigating the autocorrelation function of the RMS YSOs we show that this is not due to intrinsic clustering of the RMS YSO sample. RMS YSOs and Spitzer bubbles are essentially uncorrelated with each other beyond a normalised angular distance of two bubble radii. The bubbles associated with RMS YSOs tend to be both smaller and thinner than those that are not associated with YSOs. We interpret this tendency to be due to an age effect, with YSOs being preferentially found around smaller and younger bubbles. We find no evidence to suggest that the YSOs associated with the bubbles are any more luminous than the rest of the RMS YSO population, which suggests that the triggering process does not produce a top heavy luminosity function or initial mass function. We suggest that it is likely that the YSOs were triggered by the expansion of the bubbles and estimate that the fraction of massive stars in the Milky Way formed by this process could be between 14 and 30%.Comment: 12 pages, 8 figures. Accepted by MNRAS. This version incorporates minor suggestions by the referee. A version with higher resolution Figure 1 is available upon reques

    Hi-GAL: The Herschel Infrared Galactic Plane Survey

    Get PDF
    Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2° wide strip in the longitude range ∣l∣ < 60° in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy, and speed to deliver a homogeneous census of star-forming regions and cold structures in the interstellar medium. The resulting representative samples will yield the variation of source temperature, luminosity, mass and age in a wide range of Galactic environments at all scales from massive YSOs in protoclusters to entire spiral arms, providing an evolutionary sequence for the formation of intermediate and high-mass stars. This information is essential to the formulation of a predictive global model of the role of environment and feedback in regulating the star-formation process. Such a model is vital to understanding star formation on galactic scales and in the early universe. Hi-GAL will also provide a science legacy for decades to come with incalculable potential for systematic and serendipitous science in a wide range of astronomical fields, enabling the optimum use of future major facilities such as JWST and ALMA
    corecore