100 research outputs found
Structure of the Rna15 RRM–RNA complex reveals the molecular basis of GU specificity in transcriptional 3′-end processing factors
Rna15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3′-end processing factor from Saccharomyces cerevisiae. CFIA is required for polyA site selection/cleavage targeting RNA sequences that surround polyadenylation sites in the 3′-UTR of RNA polymerase-II transcripts. RNA recognition by CFIA is mediated by an RNA recognition motif (RRM) contained in the Rna15 subunit of the complex. We show here that Rna15 has a strong and unexpected preference for GU containing RNAs and reveal the molecular basis for a base selectivity mechanism that accommodates G or U but discriminates against C and A bases. This mode of base selectivity is rather different to that observed in other RRM-RNA structures and is structurally conserved in CstF64, the mammalian counterpart of Rna15. Our observations provide evidence for a highly conserved mechanism of base recognition amongst the 3′-end processing complexes that interact with the U-rich or U/G-rich elements at 3′-end cleavage/polyadenylation sites
In silico Analysis of 3′-End-Processing Signals in Aspergillus oryzae Using Expressed Sequence Tags and Genomic Sequencing Data
To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them
A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop
The essential splicing factor Prp24 contains four RNA Recognition Motif (RRM) domains, and functions to anneal U6 and U4 RNAs during spliceosome assembly. Here, we report the structure and characterization of the C-terminal RRM4. This domain adopts a novel non-canonical RRM fold with two additional flanking α-helices that occlude its β-sheet face, forming an occluded RRM (oRRM) domain. The flanking helices form a large electropositive surface. oRRM4 binds to and unwinds the U6 internal stem loop (U6 ISL), a stable helix that must be unwound during U4/U6 assembly. NMR data indicate that the process starts with the terminal base pairs of the helix and proceeds toward the loop. We propose a mechanistic and structural model of Prp24′s annealing activity in which oRRM4 functions to destabilize the U6 ISL during U4/U6 assembly
Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition
We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDCs. Using this approach, we construct ensembles for two variants of the transactivation response element (TAR) containing three (HIV-1) and two (HIV-2) nucleotide bulges. The HIV-1 TAR ensemble reveals significant mobility in bulge residues C24 and U25 and to a lesser extent U23 and neighboring helical residue A22 that give rise to large amplitude spatially correlated twisting and bending helical motions. Omission of bulge residue C24 in HIV-2 TAR leads to a significant reduction in both the local mobility in and around the bulge and amplitude of inter-helical bending motions. In contrast, twisting motions of the helices remain comparable in amplitude to HIV-1 TAR and spatial correlations between them increase significantly. Comparison of the HIV-1 TAR dynamical ensemble and ligand bound TAR conformations reveals that several features of the binding pocket and global conformation are dynamically preformed, providing support for adaptive recognition via a ‘conformational selection’ type mechanism
Structure of Musashi1 in a complex with target RNA: the role of aromatic stacking interactions
Mammalian Musashi1 (Msi1) is an RNA-binding protein that regulates the translation of target mRNAs, and participates in the maintenance of cell ‘stemness’ and tumorigenesis. Msi1 reportedly binds to the 3′-untranslated region of mRNA of Numb, which encodes Notch inhibitor, and impedes initiation of its translation by competing with eIF4G for PABP binding, resulting in triggering of Notch signaling. Here, the mechanism by which Msi1 recognizes the target RNA sequence using its Ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2 has been revealed on identification of the minimal binding RNA for each RBD and determination of the three-dimensional structure of the RBD1:RNA complex. Unique interactions were found for the recognition of the target sequence by Msi1 RBD1: adenine is sandwiched by two phenylalanines and guanine is stacked on the tryptophan in the loop between β1 and α1. The minimal recognition sequences that we have defined for Msi1 RBD1 and RBD2 have actually been found in many Msi1 target mRNAs reported to date. The present study provides molecular clues for understanding the biology involving Musashi family proteins
Pub1p C-Terminal RRM Domain Interacts with Tif4631p through a Conserved Region Neighbouring the Pab1p Binding Site
Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1–402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role
Long Conserved Fragments Upstream of Mammalian Polyadenylation Sites
Polyadenylation is a cotranscriptional nuclear RNA processing event involving endonucleolytic cleavage of the nascent, emerging pre-messenger RNA (pre-mRNA) from the RNA polymerase, immediately followed by the polymerization of adenine ribonucleotides, called the poly(A) tail, to the cleaved 3′ end of the polyadenylation site (PAS). This apparently simple molecular processing step has been discovered to be connected to transcription and splicing therefore increasing its potential for regulation of gene expression. Here, through a bioinformatic analysis of cis-PAS–regulatory elements in mammals that includes taking advantage of multiple evolutionary time scales, we find unexpected selection pressure much further upstream, up to 200 nt, from the PAS than previously thought. Strikingly, close to 3,000 long (30–500 nt) noncoding conserved fragments (CFs) were discovered in the PAS flanking region of three remotely related mammalian species, human, mouse, and cow. When an even more remote transitional mammal, platypus, was included, still over a thousand CFs were found in the proximity of the PAS. Even though the biological function of these CFs remains unknown, their considerable sizes makes them unlikely to serve as protein recognition sites, which are typically ≤15 nt. By harnessing genome wide DNaseI hypersensitivity data, we have discovered that the presence of CFs correlates with chromatin accessibility. Our study is important in highlighting novel experimental targets, which may provide new understanding about the regulatory aspects of polyadenylation
Global Mapping of DNA Conformational Flexibility on Saccharomyces cerevisiae
In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3’UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3’-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites
- …