97 research outputs found

    Inorganic phosphate is a trigger factor for Microbispora sp. ATCC-PTA-5024 growth and NAI-107 production

    Get PDF
    BACKGROUND: NAI-107, produced by the actinomycete Microbispora sp. ATCC-PTA-5024, is a promising lantibiotic active against Gram-positive bacteria and currently in late preclinical-phase. Lantibiotics (lanthionine-containing antibiotics) are ribosomally synthesized and post-translationally modified peptides (RiPPs), encoded by structural genes as precursor peptides. The biosynthesis of biologically active compounds is developmentally controlled and it depends upon a variety of environmental stimuli and conditions. Inorganic phosphate (Pi) usually negatively regulates biologically-active molecule production in Actinomycetes, while it has been reported to have a positive control on lantibiotic production in Firmicutes strains. So far, no information is available concerning the Pi effect on lantibiotic biosynthesis in Actinomycetes. RESULTS: After having developed a suitable defined medium, Pi-limiting conditions were established and confirmed by quantitative analysis of polyphosphate accumulation and of expression of selected Pho regulon genes, involved in the Pi-limitation stress response. Then, the effect of Pi on Microbispora growth and NAI-107 biosynthesis was investigated in a defined medium containing increasing Pi amounts. Altogether, our analyses revealed that phosphate is necessary for growth and positively influences both growth and NAI-107 production up to a concentration of 5 mM. Higher Pi concentrations were not found to further stimulate Microbispora growth and NAI-107 production. CONCLUSION: These results, on one hand, enlarge the knowledge on Microbispora physiology, and, on the other one, could be helpful to develop a robust and economically feasible production process of NAI-107 as a drug for human use. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-014-0133-0) contains supplementary material, which is available to authorized users

    Biodegradation of herbicide diuron by streptomycetes isolated from soil

    Full text link
    The diuron degrading activity of 17 streptomycete strains, obtained from agricultural and non-agricultural soils, was determined in the laboratory. All strains were identified as Streptomyces sp. by phenotypic characteristics and PCR-based assays. The strains were cultivated in liquid medium with diuron (4mgL(-1)) at 25 degrees C for 15 days. Biodegradation activity was deter-mined by high-performance liquid chromatography. The results indicated that all strains were able to degrade diuron, but to different amounts. Twelve strains degraded the herbicide by up to 50% and four of them by up to 70%. Strain A7-9, belonging to S. albidoflavus cluster, was the most efficient organism in the degradation of diuron, achieving 95% degradation after five days of incubation and no herbicide remained after 10 days. Overall, the strains isolated from agricultural soils exhibited higher degradation percentages and rates than those isolated from non-agricultural soils. Given the high degradation activity observed here, the streptomycete strains show a good potential for bioremediation of soils contaminated with diuron. (c) 2006 Elsevier Ltd. All rights reserved.Castillo López, MÁ.; Felis Reig, N.; Aragón Revuelta, P.; Cuesta Amat, G.; Sabater Marco, C. (2006). Biodegradation of herbicide diuron by streptomycetes isolated from soil. International Biodeterioration and Biodegradation. 58(3-4):196-202. doi:10.1016/j.ibiod.2006.06.020S196202583-

    Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era

    Get PDF
    The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described
    corecore