31 research outputs found

    Activation Analysis for a He/LiPb dual Coolant Blanket for DEMO Reactor

    Get PDF
    The objective of the Spanish national project TECNO_FUS is to generate a conceptual design of a DCLL (Dual-Coolant Lithium-Lead) blanket for the DEMO fusion reactor. The dually-cooled breeding zone is composed of He/Pb-15.7 6Li and SiC as liquid metal flow channel inserts. Structural materials are ferritic-martensitic steel (Eurofer-97) for the blanket and austenitic steel (316LN) for the Vacuum Vessel (VV). The goal of this work is to analyze the radioactive waste production by the neutron-induced activation and the back-end of the blanket and the VV (SS316LN) materials (Eurofer, SiC, LiPb, and SS316LN). Furthermore, the radioactive waste production in the cryostat (SS316LN) and the bioshielding (concrete) has been estimated. Following the current approach to the back-end of the materials in fusion facilities, the radioactive waste has been subdivided according to the activity-level classification (EW, exempted waste, LILW, low and intermediate level waste, and HLW, high level waste) and according to the radiological complexity of operations (handling and cooling). The activation calculations have been carried out with the ACAB code

    Propagation of nuclear data uncertainties in transmutation calculations using ACAB code

    Get PDF
    The assessment of the accuracy of parameters related to the reactor core performance (e.g, keff) and fuel cycle parameters (e.g. evolution/transmutation calculations) due to the uncertainties in the basic nuclear data (ND) is a critical issue. In performing this assessment, different error propagation techniques (adjoint/forward sensitivity analysis procedures and/or Monte Carlo technique) can be used to address by computational simulation the systematic propagation of uncertainty on the evaluation of the final responses. To perform this uncertainty evaluation the ENDF covariance files (variance/correlation in energy and cross-reactions-isotopes correlations) are required. In this paper, we assess the impact of ND uncertainties on the isotopic prediction for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) for a discharge burnup of 150 GWd/tHM. The complete set of uncertainty data for cross sections (EAF2007/UN, SCALE6.0/COVA-44G), radioactive decay and fission yield data (JEFF-3.1.1) are processed and used in ACAB code

    Methodology to address radioprotection and safety issues in the IFMIF/EVEDA accelerator prototype

    Full text link
    In the IFMIF/EVEDA accelerator prototype, deuterons (with energies up to 9 MeV) interact with the materials of the accelerator components due to beam losses and in the beam dump, where the beam is stopped. The productions of neutrons/photons together with radioactive inventories due to deuteron-induced reactions are some major issues for radioprotection and safety assessment. Here, we will focus on the proposal of a computational approach able to simulate deuteron transport and evaluate deuteron interactions and production of secondary particles with acceptable precision. Current Monte Carlo codes, such as MCNPX or PHITS, when applied for deuteron transport calculation, use built-in semi-analytical models to describe deuteron interactions. These models are found unreliable in predicting neutron and photon generated by low energy deuterons, typically present in the IFMIF/EVEDA prototype accelerator. In this context, a new computational methodological approach is proposed based on the use of an extended version of current MC codes capable to use evaluated deuteron libraries for neutron (and gamma) production. The TALYS nuclear reaction code is found to be an interesting potential candidate to produce the evaluated data for double-differential neutron and photon emission cross sections for incident deuterons in the energy range of interest for IFMIF/EVEDA applications. The recently-released deuteron Talys-based Evaluated Nuclear Data Library, TENDL-2009, is considered a good starting point in the road to achieve deuteron data files of enough quality for deuteron transport problems in EVEDA. Unfortunately, current Monte Carlo transport codes are not able to handle light ion libraries except for protons. To overcome this drawback the MCNPX code has been extended to handle deuteron (also triton, helion and alpha) nuclear data libraries. In this new extended MCNPX version called MCUNED, a new variance reduction technique has also been implemented for the production of secondary particles induced by light ions nuclear reactions, which allow reducing drastically the computing time needed in transport and nuclear response function calculations. Verification of these new capabilities for Monte 2 Carlo simulation of deuteron transport and secondary products generation included in MCUNED is successfully achieved. The existence of the MCUNED code allows us for the first time testing the deuteron crosssection TENDL package by simulation of integral experiments. Some preliminary efforts are addressed to compare existing experimental data on thick target neutron yields for Copper with those computed by the MCUNED code using TENDL cross sections

    Optimized design of local shielding for the IFMIF/EVEDA beam dump

    Get PDF
    This paper describes the local shielding design process of the IFMIF/EVEDA Beam Dump and the most relevant results obtained from the simulations. Different geometries and materials have been considered, and the design has been optimized taking into account the origin of the doses, the effect of the walls of the accelerator vault and the space restrictions. The initial idea was to shield the beam stopper with a large water tank of easy transport and dismantling but it was shown to be insufficient to satisfy the dose limit requirements, basically due to photon dose, and hence a denser shield combining hydrogenous and heavy materials was preferred. It will be shown that, with this new shielding, dose rate outside the accelerator vault during operation comply with the legal limits and unrestricted maintenance operations inside most of the vault are possible after a reasonable cooling time after shutdown

    ERK5/BMK1 is a novel target of the tumor suppressor VHL: implication in clear cell renal carcinoma

    Get PDF
    Hi ha quatre pàgines de material suplementari sense numeracióExtracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation. Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 correlate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of ERK5 in renal carcinomas

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    The effect of environment on type Ia supernovae in the dark energy survey three-year cosmological sample

    Get PDF
    Analyses of type Ia supernovae (SNe Ia) have found puzzling correlations between their standardised luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower-mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey three-year spectroscopically-confirmed cosmological sample, obtaining photometry in a series of ‘local’ apertures centred on the SN, and for the global host galaxy. We study the differences in these host galaxy properties, such as stellar mass and rest-frame U − R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ∼0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U − R steps are small, both ∼0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples based on SN Ia light curve parameters: stretch (x1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U − R, for both local and global measurements, of ∼0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U − R r.m.s. scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U − R environments

    ERK5/BMK1 Is a Novel Target of the Tumor Suppressor VHL: Implication in Clear Cell Renal Carcinoma

    Get PDF
    Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation. Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 correlate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of ERK5 in renal carcinomas
    corecore