24 research outputs found
Learning Real-world Autonomous Navigation by Self-Supervised Environment Synthesis
Machine learning approaches have recently enabled autonomous navigation for
mobile robots in a data-driven manner. Since most existing learning-based
navigation systems are trained with data generated in artificially created
training environments, during real-world deployment at scale, it is inevitable
that robots will encounter unseen scenarios, which are out of the training
distribution and therefore lead to poor real-world performance. On the other
hand, directly training in the real world is generally unsafe and inefficient.
To address this issue, we introduce Self-supervised Environment Synthesis
(SES), in which, after real-world deployment with safety and efficiency
requirements, autonomous mobile robots can utilize experience from the
real-world deployment, reconstruct navigation scenarios, and synthesize
representative training environments in simulation. Training in these
synthesized environments leads to improved future performance in the real
world. The effectiveness of SES at synthesizing representative simulation
environments and improving real-world navigation performance is evaluated via a
large-scale deployment in a high-fidelity, realistic simulator and a
small-scale deployment on a physical robot
Benchmarking Reinforcement Learning Techniques for Autonomous Navigation
Deep reinforcement learning (RL) has brought many successes for autonomous
robot navigation. However, there still exists important limitations that
prevent real-world use of RL-based navigation systems. For example, most
learning approaches lack safety guarantees; and learned navigation systems may
not generalize well to unseen environments. Despite a variety of recent
learning techniques to tackle these challenges in general, a lack of an
open-source benchmark and reproducible learning methods specifically for
autonomous navigation makes it difficult for roboticists to choose what
learning methods to use for their mobile robots and for learning researchers to
identify current shortcomings of general learning methods for autonomous
navigation. In this paper, we identify four major desiderata of applying deep
RL approaches for autonomous navigation: (D1) reasoning under uncertainty, (D2)
safety, (D3) learning from limited trial-and-error data, and (D4)
generalization to diverse and novel environments. Then, we explore four major
classes of learning techniques with the purpose of achieving one or more of the
four desiderata: memory-based neural network architectures (D1), safe RL (D2),
model-based RL (D2, D3), and domain randomization (D4). By deploying these
learning techniques in a new open-source large-scale navigation benchmark and
real-world environments, we perform a comprehensive study aimed at establishing
to what extent can these techniques achieve these desiderata for RL-based
navigation systems
Recommended from our members
Machine Learning Methods for Local Motion Planning: A Study of End-to-End vs. Parameter Learning
This conference paper was featured in the October 2021 Good System Network Digest.Office of the VP for Researc
A Scoping Review of Ethical and Legal Issues in Behavioural Variant Frontotemporal Dementia
Behavioural variant frontotemporal dementia (bvFTD) is a subtype of frontotemporal dementia characterized by changes in personality, social behaviour, and cognition. Although neural abnormalities cause bvFTD patients to struggle with inhibiting problematic behaviour, they are generally considered fully autonomous individuals. Subsequently, bvFTD patients demonstrate understanding of right and wrong but are unable to act in accordance with moral norms. To investigate the ethical, legal, and social issues associated with bvFTD, we conducted a scoping review of academic literature with inclusion & exclusion criteria and codes derived from our prior work. Among our final sample of fifty-six articles, four mentioned bvFTD patient-offenders as unfit to stand trial by insanity, and sixteen mentioned the use of dementia evidence in a court of law to better understand the autonomy of bvFTD patients. Additional emergent issues that were discovered include: training police officers to handle situations involving bvFTD patients and educating healthcare providers on how to help caregivers navigate bvFTD. The current literature highlights the inadequacy of traditional applications of medico-legal categories such as autonomy, capacity and competence, in informing cognitive capacity assessments in clinical and legal settings and deserves consideration by neuroethicists
Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of Demonstrations for Social Navigation
Social navigation is the capability of an autonomous agent, such as a robot,
to navigate in a 'socially compliant' manner in the presence of other
intelligent agents such as humans. With the emergence of autonomously
navigating mobile robots in human populated environments (e.g., domestic
service robots in homes and restaurants and food delivery robots on public
sidewalks), incorporating socially compliant navigation behaviors on these
robots becomes critical to ensuring safe and comfortable human robot
coexistence. To address this challenge, imitation learning is a promising
framework, since it is easier for humans to demonstrate the task of social
navigation rather than to formulate reward functions that accurately capture
the complex multi objective setting of social navigation. The use of imitation
learning and inverse reinforcement learning to social navigation for mobile
robots, however, is currently hindered by a lack of large scale datasets that
capture socially compliant robot navigation demonstrations in the wild. To fill
this gap, we introduce Socially CompliAnt Navigation Dataset (SCAND) a large
scale, first person view dataset of socially compliant navigation
demonstrations. Our dataset contains 8.7 hours, 138 trajectories, 25 miles of
socially compliant, human teleoperated driving demonstrations that comprises
multi modal data streams including 3D lidar, joystick commands, odometry,
visual and inertial information, collected on two morphologically different
mobile robots a Boston Dynamics Spot and a Clearpath Jackal by four different
human demonstrators in both indoor and outdoor environments. We additionally
perform preliminary analysis and validation through real world robot
experiments and show that navigation policies learned by imitation learning on
SCAND generate socially compliant behavior
A Review of Current Surgical Approaches and Diagnostic Features Associated with Craniosynostosis Patients and the Relation to Oral and Maxillofacial Surgery
The chapter will describe etiology of craniosynostosis and the management in the young child. Included will be classification of various forms of craniosynostosis and surgical management. Diagnostic imaging including CT scan, MRI, etc. will be mentioned as a tool in the treatment considerations of the patient with Craniosynostosis. Initial diagnosis, and consultation with appropriate surgical service, and treatment options will be discussed in the Chapter. Surgical options will include surgical plan and fixation methods. Further discussion of combined orthodontic and surgical treatment planning is presented. Complications will be discussed and summarized including reasonable expectations with both short and long term outcomes
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens