421 research outputs found

    Detectability and parameter estimation of GWTC-3 events with LISA

    Get PDF
    Multiband observations of coalescing stellar-mass black holes binaries could deliver valuable information on the formation of those sources and potential deviations from General Relativity. Some of these binaries might be first detected by the space-based detector LISA and, then, several years later, observed with ground-based detectors. Due to large uncertainties in astrophysical models, it is hard to predict the population of such binaries that LISA could observe. In this work, we assess the ability of LISA to detect the events of the third catalogue of gravitational wave sources released by the LIGO/Virgo/KAGRA collaboration. We consider the possibility of directly detecting the source with LISA and performing archival searches in the LISA data stream, after the event has been observed with ground-based detectors. We also assess how much could LISA improve the determination of source parameters. We find that it is not guaranteed that any event other than GW150914 would have been detected. Nevertheless, if any event is detected by LISA, even with a very low signal-to-noise ratio, the measurement of source parameters would improve by combining observations of LISA and ground based detectors, in particular for the chirp mass

    A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS

    Full text link
    Benchmark brown dwarfs are those objects for which fiducial constraints are available, including effective temperature, parallax, age, metallicity. We searched for new cool brown dwarfs in 186 sq.deg. of the new area covered by the data release DR5+ of the UKIDSS Large Area Survey. Follow-up optical and near-infrared broad-band photometry, and methane imaging of four promising candidates, revealed three objects with distinct methane absorption, typical of mid- to late-T dwarfs, and one possibly T4 dwarf. The latest-type object, classified as T8-9, shares its large proper motion with Ross 458 (BD+13o2618), an active M0.5 binary which is 102" away, forming a hierarchical low-mass star+brown dwarf system. Ross 458C has an absolute J-band magnitude of 16.4, and seems overluminous, particularly in the K band, compared to similar field brown dwarfs. We estimate the age of the system to be less than 1 Gyr, and its mass to be as low as 14 Jupiter masses for the age of 1 Gyr. At 11.4 pc, this new late T benchmark dwarf is a promising target to constrain the evolutionary and atmospheric models of very low-mass brown dwarfs. We present proper motion measurements for our targets and for 13 known brown dwarfs. Two brown dwarfs have velocities typical of the thick disk and may be old brown dwarfs.Comment: 15 pages, 10 figures and 6 tables. Accepted by MNRAS. Uses mn2e.cls and aas_macr

    Chasing Super-Massive Black Hole merging events with AthenaAthena and LISA

    Full text link
    The European Space Agency is studying two large-class missions bound to operate in the 20302030s, and aiming at investigating the most energetic phenomena in the Universe. AthenaAthena is poised to study the physical conditions of baryons in large-scale structures, as well as to yield a census of accreting super-massive black holes down to the epoch of reionization; the Laser Interferometer Space Antenna (LISA) will extend the hunt for Gravitational Wave (GW) events to the mHz regime. While the science cases of the two missions are independently outstanding, we discuss in this paper the additionaladditional science that their concurrent operation could yield. We focus on the multi-messenger study of Super-Massive (M107M\lesssim 10^7\rm M_{\odot}) Black Hole Mergers (SMBHMs), accessible to AthenaAthena up to z2z\sim2. The simultaneous measurement of their electro-magnetic (EM) and GW signals may enable unique experiments in the domains of astrophysics, fundamental physics, and cosmography. Key to achieve these results will be the LISA capability of locating a SMBHM event with an error box comparable to, or better than the field-of-view of the AthenaAthena Wide Field Imager (0.4\simeq0.4deg2^2). LISA will achieve such an accuracy several hours prior to merging for the highest signal-to-noise events. While theoretical predictions of the EM emission are still uncertain, this opens in principle the possibility of truly concurrent EM and GW studies of the merger phase. LISA localization improves significantly at merging, and is likely to reach the arcminute-level for a sizeable fraction of events at z0.5z\lesssim 0.5 and masses 106M\lesssim10^6\rm M_{\odot}, well within the detection capability of AthenaAthena. We also briefly discuss the prospective of AthenaAthena studies for other classes of GW-emitting black hole binaries, for which theoretical predictions are admittedly extremely uncertain. [abridged]Comment: 18 pages, 8 figures. Submitted to MNRA

    Bursts and Isolated Spikes Code for Opposite Movement Directions in Midbrain Electrosensory Neurons

    Get PDF
    Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does not take into account particular action potential patterns. We investigated how different action potential patterns, namely bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter values for which our model neuron did not display directional selectivity when the full spike train was considered but displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval threshold. Our results thus show for the first time that different action potential patterns can differentially encode movement and that traditional measures of directional selectivity need to be revised in such cases

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

    Get PDF
    Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.
    corecore