11 research outputs found

    L-Carnitine Reduces in Human Conjunctival Epithelial Cells Hypertonic- Induced Shrinkage through Interacting with TRPV1 Channels

    Get PDF
    Background/Aims: Ocular surface health depends on conjunctival epithelial (HCjE) layer integrity since it protects against pathogenic infiltration and contributes to tissue hydration maintenance. As the same increases in tear film hyperosmolarity described in dry eye disease can increase corneal epithelial transient receptor potential vanilloid type-1 (TRPV1) channel activity, we evaluated its involvement in mediating an osmoprotective effect by L-carnitine against such stress. Methods: Using siRNA gene silencing, Ca2+imaging, planar patch- clamping and relative cell volume measurements, we determined if the protective effects of this osmolyte stem from its interaction with TRPV1. Results: TRPV1 activation by capsaicin (CAP) and an increase in osmolarity to≈450 mOsM both induced increases in Ca2+levels. In contrast, blocking TRPV1 activation with capsazepine (CPZ) fully reversed this response. Similarly, L-carnitine (1 mM) also reduced underlying whole-cell currents. In calcein-AM loaded cells, hypertonic-induced relative cell volume shrinkage was fully blocked during exposure to L-carnitine. On the other hand, in TRPV1 gene-silenced cells, this protective effect by L-carnitine was obviated. Conclusion: The described L-carnitine osmoprotective effect is elicited through suppression of hypertonic-induced TRPV1 activation leading to increases in L-carnitine uptake through a described Na+-dependent L-carnitine transporter

    SLocX: Predicting Subcellular Localization of Arabidopsis Proteins Leveraging Gene Expression Data

    Get PDF
    Despite the growing volume of experimentally validated knowledge about the subcellular localization of plant proteins, a well performing in silico prediction tool is still a necessity. Existing tools, which employ information derived from protein sequence alone, offer limited accuracy and/or rely on full sequence availability. We explored whether gene expression profiling data can be harnessed to enhance prediction performance. To achieve this, we trained several support vector machines to predict the subcellular localization of Arabidopsis thaliana proteins using sequence derived information, expression behavior, or a combination of these data and compared their predictive performance through a cross-validation test. We show that gene expression carries information about the subcellular localization not available in sequence information, yielding dramatic benefits for plastid localization prediction, and some notable improvements for other compartments such as the mitochondrion, the Golgi, and the plasma membrane. Based on these results, we constructed a novel subcellular localization prediction engine, SLocX, combining gene expression profiling data with protein sequence-based information. We then validated the results of this engine using an independent test set of annotated proteins and a transient expression of GFP fusion proteins. Here, we present the prediction framework and a website of predicted localizations for Arabidopsis. The relatively good accuracy of our prediction engine, even in cases where only partial protein sequence is available (e.g., in sequences lacking the N-terminal region), offers a promising opportunity for similar application to non-sequenced or poorly annotated plant species. Although the prediction scope of our method is currently limited by the availability of expression information on the ATH1 array, we believe that the advances in measuring gene expression technology will make our method applicable for all Arabidopsis proteins

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    L-Carnitine Reduces in Human Conjunctival Epithelial Cells Hypertonic-Induced Shrinkage through Interacting with TRPV1 Channels

    No full text
    Background/Aims: Ocular surface health depends on conjunctival epithelial (HCjE) layer integrity since it protects against pathogenic infiltration and contributes to tissue hydration maintenance. As the same increases in tear film hyperosmolarity described in dry eye disease can increase corneal epithelial transient receptor potential vanilloid type-1 (TRPV1) channel activity, we evaluated its involvement in mediating an osmoprotective effect by L-carnitine against such stress. Methods: Using siRNA gene silencing, Ca2+ imaging, planar patch-clamping and relative cell volume measurements, we determined if the protective effects of this osmolyte stem from its interaction with TRPV1. Results: TRPV1 activation by capsaicin (CAP) and an increase in osmolarity to ≈ 450 mOsM both induced increases in Ca2+ levels. In contrast, blocking TRPV1 activation with capsazepine (CPZ) fully reversed this response. Similarly, L-carnitine (1 mM) also reduced underlying whole-cell currents. In calcein-AM loaded cells, hypertonic-induced relative cell volume shrinkage was fully blocked during exposure to L-carnitine. On the other hand, in TRPV1 gene-silenced cells, this protective effect by L-carnitine was obviated. Conclusion: The described L-carnitine osmoprotective effect is elicited through suppression of hypertonic-induced TRPV1 activation leading to increases in L-carnitine uptake through a described Na+-dependent L-carnitine transporter

    Epigenome-wide association meta-analysis of DNA methylation with coffee and tea consumption

    Get PDF
    Coffee and tea are extensively consumed beverages worldwide which have received considerable attention regarding health. Intake of these beverages is consistently linked to, among others, reduced risk of diabetes and liver diseases; however, the mechanisms of action remain elusive. Epigenetics is suggested as a mechanism mediating the effects of dietary and lifestyle factors on disease onset. Here we report the results from epigenome-wide association studies (EWAS) on coffee and tea consumption in 15,789 participants of European and African-American ancestries from 15 cohorts. EWAS meta-analysis of coffee consumption reveals 11 CpGs surpassing the epigenome-wide significance threshold (P-value &lt;1.1×10−7), which annotated to the AHRR, F2RL3, FLJ43663

    Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility, and BRCA1-mediated DNA repair [editorial comment]

    No full text
    ABSTRACT: Menopause timing has a major impact on infertility and risk of disease. Younger age at natural (nonsurgical) menopause (ANM) is associated with a higher risk of osteoporosis, cardiovascular disease, and type 2 diabetes and a lower risk of breast cancer. Late menopause is associated with a higher risk of breast cancer. It is well known that the age at which women go through menopause is partly determined by genes, but the underlying mechanisms are poorly understood. Genome-wide association studies have identified 18 common genetic variants associated with ANM. These variants explain less than 5% of the variation in ANM compared with the 21% explained by all common variants on genome-wide association study arrays. This genome-wide association study was the collaborative effort of researchers from 177 institutions worldwide. The study was designed to investigate genetic variants associated with timing of menopause among a population of approximately 70,000 women of European ancestry. A dual strategy was used to identify both common and, for the first time, low-frequency coding variants associated with ANM. The causal relationship between ANM and breast cancer was investigated using a Mendelian randomization approach. Combined analysis identified 1208 single-nucleotide polymorphisms (SNPs) of a total of approximately 2.6 million that reached the genome-wide significance threshold for association with ANM. Forty-four regions with common variants were identified; among these 44 loci were 2 rare low-frequency missense alleles of large effect. A majority of ANM SNPs were enriched in DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal relationship between delayed ANM and breast cancer risk; there was approximately 6% increase in risk per year; P = 3 × 10-14); increased risk with delayed menopause appeared to be mediated primarily by prolonged sex hormone exposure in a woman’s lifetime, not DDR mechanisms. This is the first study to confirm the link between early and late menopause and breast cancer risk using genetic information. Age at natural menopause genetic variants influence breast cancer risk primarily through variation in menopause timing. Although carrying higher numbers of ANM-increasing variants and enrichment in DDR genes are associated with a modest increase in breast cancer risk, the major mechanism for increased risk appears to be prolonged estrogen and/or progesterone exposure due to delayed menopause

    Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    Get PDF
    Copyright © 2015, Rights Managed by Nature Publishing GroupThis is the author's version of an article subsequently published in definitive form at: Nature Genetics (2015) doi:10.1038/ng.3412See supplementary documents for full affiliations and acknowledgmentsMenopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms
    corecore