23 research outputs found

    Invasive Bullfrogs Maintain High Levels of Immune Gene Diversity Despite Elevated Bd Infection Relative to Native Populations

    Get PDF
    Maintenance of genetic diversity at ecologically-relevant loci may be important for allowing invasive populations to become established despite decreases in genomic diversity due to founder effects. To evaluate this prediction, we compared genetic diversity at an expressed MHC class IIß gene fragment to a 909 bp region of the neutral cytochrome b (cytb) locus from 20 populations of the American bullfrog (Rana catesbeiana) across its North American invasive and native ranges and quantified the presence of Batrachochytrium dendrobatidis (Bd), a pathogen, for which R. catesbeiana is a vector species. We recovered 28 unique MHC alleles and found that invasive populations had significantly higher Bd prevalence and intensity and significantly higher pairwise FST than native populations, but maintained similar levels of MHC diversity, contrasted by lower neutral cytb diversity. Across all populations the two most common alleles (LiCA_B & Rapi_33) were associated with a significant decreased risk of Bd infection, and we detected positive selection acting on three MHC peptide binding residues, indicating that positive selection drives MHC evolution, likely in part due to disease pressure. A cytb phylogenetic analysis indicated that invasive populations likely arose from a single founding population from somewhere in the American Midwest with a possible subsequent invasion. In contrast, MHC phylogenetic analyses revealed widespread allele sharing across native and invasive ranges, but limited trans-species polymorphism, indicating a unique MHC evolutionary history in R. catesbeiana that may play a key role in the species\u27 high Bd tolerance. Overall, our data indicate that balancing selection maintains MHC diversity in invasive R. catesbeiana despite founder effects evident from the cytb dataset. This study suggests that maintenance of diversity at ecologically-relevant loci contribute to the successful establishment of invasive populations and highlights the importance of quantifying diversity at functional loci to assess the evolutionary potential of invasive populations

    Character Displacement in the Midst of Substantial Background Evolution in Anolis Lizard Island Populations

    Get PDF
    Negative interactions between species can generate divergent selection that causes character displacement. However, other processes cause similar divergence. We use spatial and temporal replication across island populations of Anolis lizards to assess the importance of negative interactions in driving trait shifts. Previous work showed that the establishment of Anolis sagrei on islands drove resident Anolis carolinensis to perch higher and evolve larger toepads. To further test the interaction\u27s causality and predictability, we resurveyed a subset of islands nine years later. Anolis sagrei had established on one island between surveys. We found that A. carolinensis on this island now perch higher and have larger toepads. However, toepad morphology change on this island was not distinct from shifts on six other islands whose Anolis community composition had not changed. Thus, the presence of A. sagrei only partly explains A. carolinensis trait variation across space and time. We also found that A. carolinensis on islands with previously established A. sagrei now perch higher than a decade ago, and that current A. carolinensis perch height is correlated with A. sagrei density. Our results suggest that character displacement likely interacts with other evolutionary processes in this system, and that temporal data are key to detecting such interactions

    The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence

    Get PDF
    BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.SE-vdA is supported by BBSRC grant BB/M014207/1. Sequencing was funded by BBSRC grant BB/F000642/1 to the University of Leeds and grant BB/F00334X/1 to the Wellcome Trust Sanger Institute). DRL was supported by a fellowship from The James Hutton Institute and the School of Biological Sciences, University of Edinburgh. GK was supported by a BBSRC PhD studentship. The James Hutton Institute receives funding from the Scottish Government. JAC and NEH are supported by the Wellcome Trust through its core funding of the Wellcome Trust Sanger Institute (grant 098051). This work was also supported by funding from the Canadian Safety and Security Program, project number CRTI09_462RD

    Self-love and sociability: the ‘rudiments of commerce’ in the state of nature

    Get PDF
    Istvan Hont’s classic work on the theoretical links between the seventeenth-century natural jurists Hugo Grotius and Samuel Pufendorf and the eighteenth-century Scottish political economists remains a popular trope among intellectual and economic historians of various stamps. Despite this, a common criticism levelled at Hont remains his relative lack of engagement with the relationship between religion and economics in the early modern period. This paper challenges this aspect of Hont’s narrative by drawing attention to an alternative, albeit complementary, assessment of the natural jurisprudential heritage of eighteenth-century British political economy. Specifically, the article attempts to map on to Hont’s thesis the Christian Stoic interpretation of Grotius and Pufendorf which has gained greater currency in recent years. In doing so, the paper argues that Grotius and Pufendorf’s contributions to the ‘unsocial sociability’ debate do not necessarily lead directly to the Scottish school of political economists, as is commonly assumed. Instead, it contends that a reconsideration of Grotius and Pufendorf as neo-Stoic theorists, particularly via scrutiny of their respective adaptations of the traditional Stoic theory of oikeiosis, steers us towards the heart of the early English ‘clerical’ Enlightenment

    GWAS analysis of maize host plant resistance to western corn rootworm (Coleoptera: Chrysomelidae) reveals candidate small effect loci for resistance breeding.

    No full text
    Western corn rootworm, Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), is the most serious economic pest of maize, Zea mays (L.) (Poales: Poaceae), in the U.S. Corn Belt and also threatens production in Europe. Traditional management options have repeatedly failed over time as western corn rootworm rapidly develops resistance to insecticides, transgenic maize and even crop rotation. Traits that improve host plant resistance and tolerance are highly sought after by plant breeders for crop protection and pest management. However, maize resistance to western corn rootworm appears to be highly complex and despite over 75 yr of breeding efforts, there are no naturally resistant hybrids available commercially. Using phenotypic data from field and greenhouse experiments on a highly diverse collection of 282 inbred lines, we screened and genetically mapped western corn rootworm-related traits to identify genetic loci which may be useful for future breeding or genetic engineering efforts. Our results confirmed that western corn rootworm resistance is complex with relatively low heritability due in part to strong genotype by environment impacts and the inherent difficulties of phenotyping below ground root traits. The results of the Genome Wide Associated Study identified 29 loci that are potentially associated with resistance to western corn rootworm. Of these loci, 16 overlap with those found in previous transcription or mapping studies indicating a higher likelihood they are truly involved in maize western corn rootworm resistance. Taken together with previous studies, these results indicate that breeding for natural western corn rootworm resistance will likely require the stacking of multiple small effect loci
    corecore