15 research outputs found
Quantum entanglement in the NMR implementation of the Deutsch-Jozsa algorithm
A scheme to execute an n-bit Deutsch-Jozsa (D-J) algorithm using n qubits has
been implemented for up to three qubits on an NMR quantum computer. For the one
and two bit Deutsch problem, the qubits do not get entangled, hence the NMR
implementation is achieved without using spin-spin interactions. It is for the
three bit case, that the manipulation of entangled states becomes essential.
The interactions through scalar J-couplings in NMR spin systems have been
exploited to implement entangling transformations required for the three bit
D-J algorithm.Comment: 4-pages in revtex with 5 eps figure included using psfi
Photodetection of propagating quantum microwaves in circuit QED
We develop the theory of a metamaterial composed of an array of discrete
quantum absorbers inside a one-dimensional waveguide that implements a
high-efficiency microwave photon detector. A basic design consists of a few
metastable superconducting nanocircuits spread inside and coupled to a
one-dimensional waveguide in a circuit QED setup. The arrival of a {\it
propagating} quantum microwave field induces an irreversible change in the
population of the internal levels of the absorbers, due to a selective
absorption of photon excitations. This design is studied using a formal but
simple quantum field theory, which allows us to evaluate the single-photon
absorption efficiency for one and many absorber setups. As an example, we
consider a particular design that combines a coplanar coaxial waveguide with
superconducting phase qubits, a natural but not exclusive playground for
experimental implementations. This work and a possible experimental realization
may stimulate the possible arrival of "all-optical" quantum information
processing with propagating quantum microwaves, where a microwave photodetector
could play a key role.Comment: 27 pages, submitted to Physica Scripta for Nobel Symposium on "Qubits
for Quantum Information", 200
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=7 TeV
Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5) = 5.78 +/- 0.01(stat) +/- 0.23(stat) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from root s = 0.9 to 7 TeV is [66.1 +/- 1.0(stat) +/- 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 +/- 0.005(stat) +/- 0.015(syst) GeV/c. The results are compared with similar measurements at lower energies
