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Deutsch-Jozsa algorithm

ARVIND, KAVITA DORAT* and ANIL KUMAR! = .. o

Department of Physics, Guru Nanak Dev University, Amritsar 143 003, India

“Institute for Organic Chemistry, University of Frankfurt, D-60439 Frankfurt am Main, Germany
fSophisticated Instruments Facility, Tndian Institute of Science, Bangalore 360 012, India

Email: arvind@physics.iise.ernet.in; kavita @ physics.iisc.ernet.in; anilnmr @physics.iisc.ernet.in

MS received 1 February 2001; revised 13 April 2001

Abstract. A scheme to execute an m-bit Deutsch-Jozsa (DJ) algorithm using n qubits has been
implemented for up to three qubits on an NMR quantum computer. For the one- and the two-bit
Deutsch problem, the qubits do not get entangled, and the NMR implementation is achieved without
using spin-spin interactions. It is for the three-bit case, that the maunipulation of entangled states
becomes essential. The interactions through scalar J-couplings in NMR spin systems have been
exploited to implement entangling transformations required for the three bit DI algorithni.
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The utilization of the intrinsicaily quantwm mechanical nature of the physical world to
widen the scope of computational algorithms is one of the important discoveries of this
decade [1-3]. It was shown recently that quantum computers can perform certain compu-
tational tasks nontrivially faster than classical computers {4-6]. NMR has been the most
successful technique o implement gquantum algorithms till date [7,8], even though the
debate continues about its implications [9].

The Cleve version of the DJ algorithm [10], which requires 71-+1 qubiis to solve the n-bit
Deutsch problem, has been implemenied by several research groups using NMR [11—141.
It has been shown recently that the n-bit Deutsch problem can be solved using n qubiis
alone {151,

In this paper, we experimentaily demonstrate that the n-bit DJ algorithm does not
require n 4 1 qubits for its implementation. By doing away with the extra qubit, the
algorithm can be more easily accessed for a grealer number of qubits. Furthermore, the
one-bit and two-bit implementations of the modified version do not involve quantum en-
tanglement [15,16]. In these cases, only the concept of coherent superposition is exploited,
to prepare ‘in parallel’ an mput state which is a superposition of all possibie classical in-
puts, and the experiment has been performed without using spin—spin interactions. It is in
the Implementation for three or more qubits that quantim entapglement plays a vital role.
It hence emerges from our results that the DT problem for one and two input qubits is not
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in essence a quantum problem. The non-trivial quantum features in the algorithm show
up only in the implementation for three or more qubits. The NMR implementation of the
modified DI algorithm for one and two qubits uses selective pulses that achieve rotations
in the subspaces of individual spins. The non-trivial phase shifts essential for the three-
bit problem have been implemented using compaosite z-pulses. A judicious combination
of selective rf pulses and free evelution intervals (under the interaction Hamiltonian), has
been employed to construct the reguired entangling transformations.

Consider an n-bit binary string x; a function f can be defined on this n-bit domain
space to & I-bit range space, with the restriction that either the output is the same for all
inputs (the function is ‘constant’) or the output is 0 for half the inputs and 1 for the other
half (the function is ‘baianced’}. All the 2™ possible input strings are vahid inputs for
the function (f{z) = {0,1}). In quantum computation, these n-bit logical sirings are in
one-to-one correspondence with the eigenstates of n-qubits, and one can hence label the
logical string @ by the eigenstate |a). Classicaily, for an n-bit domain space, one needs to
compufe the function at least 2%~ + 1 times in order to determine whether it is constant
or balanced. The DJ algerithm achieves this on a quantum computer using only a single
function call [4,10].

The usual implementation of the DI algorithm for v bits requires n + 1 qubits, the
function J being encoded through an f-dependent unitary transformation

Uy
) b 1nie 2 [ noniely @ (@)1, (1)
where & denotes addition modulo 2. The implementation of the unitary transformation [/ £
along with the Hadamard transformation, then suffices to distinguish the functicn as con-
stant or balanced [4,10]. A Hadamard transformation on ene qubit mixes the eigenstates
maximally,
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The Hadamard oransformation for n-qubits is the tensor product of the one-qubit transfor-
mation (H* = H @ H @ H ® .- @ H), its action on the n-qubit eigenstates being
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n/2
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where z; and y; are the 7th entries of the n-bit strings @ and .
A moditied scheme can be designed to solve the n-bit Deutsch problem, using n qubits
alone {15]. Here, for every function f a unitary transformation is constructed, such that its’
action on the eigenstates of n-qubits is

%) "
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Itis instructive to explore the relationship between egs (1) and (4) and to see how exactly
we are able to get rid of the extra qubit for the function call required in the older scheme.
The original motivation behind including the extra qubit for the function call in eq. (1) was
to canstruct a reversibie(unitary) way of implementing otherwise irreversible function f.
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Figure 1. The block diagram for the modified D algorithm,

However, it turns out that we can unitarily implement f without this extra qubit. The way
the function is being implemented in eq. (4) is through phase shifts which is a purely
guanium mechanical concept and has no classical analogue. On the other hand, eq. (1} has
a classicul motivation and it indeed reduces to a classical implementation if applied to just
the eigenstates of the qubits involved. This brings out the interesting fact that one should
not always use classical ways of implementing logic even on eigenstates, and it might
be useful to directly implement quantum schemes without bothering about correspending
classical analogues.

Consider n qubits, all in the state |0); 2 Hadamard transformation H™ converts this state
to a linear superposition of all 2™ eigenstates with equal amplitudes and no phase differ-
ences. The unitary transformation Uy (defined in eq. {4)) acting on this state, introduces
an f-dependent phase factor in each eigenstate in the superposition. At this juncture, all
information zbout f is encoded in the quantum state of the n qubits. A Hadamard trans-
formation H™ is once again applied in order to extract the function’s constant or balanced
nature:

gy -
a1 U | — . .
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The final expression for the cutput state in eq. (5) has an amplitude 1 for the state |3 aiebis
for a constant function and an amplitude 0 for a balanced function.

The categorization of the function as constant or balanced through a single function call
using n qubits, is shown pictorially in figure 1.

The number of functions for the n-bit Deutsch problem is NC’N/Q + 2 (where N = 2™,
The experimental impiementation of the modified DJ algorithm for n bits requires the re-
alization of the unitary transformation corresponding to each of these functions, alongwith
the n-bit Hadamard trapsformation, on a physical system, We now proceed lowards the
NMR implementation of the modified DI algorithm for one, two and three gubits, where
the number of functions are 4, &, and 72 respectively.

The pseudo-Hadamard transformation [17] {practically equivalent to the Hadamard op-
srator described in eq. (2)) achizved by a (907}, pulse on & spin, has been utilized in our
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Figure 2. The modified DI algorithm for one qubit implemented on 5-nitro-2-furalde-
hiyde, the proton resonating at 9.2 ppm being chosen as the computation gubit.

experiments, For the case of two and three qubits, the same has been achieved by a {90°),
pulse applied non-selectively on alf the spins.

The n-bit unitary transformations Uy corresponding to the functions f, are diagonal in
the eigenbasis and find a natural description in terms of the single-spin operators,

G (10Y [l 0
I”(01)’“:“‘01’ ()

where j labeis the qubit involved. The action of U/; on an eigenstate (as described in eq.
(4)), has been used to calculate the explicit matrix forms of Uy, {or every function f.

The operator representations of the four unitary transformations for the one-bit modified
DJ algorithm are

U}(lvbit) — 7y {const),

Uélvblt) — i1 {const.),

U(l“bit) _ {13 (7)
S = gl {(bal.),

Uilrblt) — _ng) (bal.).

A psendo-Hadamard operation achieved by a {90°), pulse is applied on a thermal initial
state, in order to create a coherent superposition prior to applying the desirad unitary trans-
formations U/;. The constant functions correspend to a “do-nothing” operation, while the
balanced functions are achieved by a rotation by the angle o about the z-axis of the spin,
up to a global phase factor, These z-rotations have been implemented using composite-z
puises, whereby 2 rotation by an arbitrary angle & about the z-axis, can be decomposed as
a set of rotations about the x and ¥ axes [18]:

0}z = (n/2),(0)(7/2) s {8)

Global phase changes are not detectable in NMR and are hence ignored. The spectrum
reflects the constant or balanced nature of the funciion iuplemented (figure 2). After the
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Figure 3. The modified DJ algorithm for two qubits, implemented on 5-nitro-2-fural-
dehyde with the two qubits resonating at 6.47 ppm and 6.29 ppm respectively,

implementation of a balanced function, the qubit is in a state out-cf-phase with the rest of
the spectrum. The modified DJ algorithm for one qubit demonstrates the power inherent in
even a single bit of quantum information.

All the § unitary transformations corresponding to the functions for the two-qubit case
{7)

are given in terms of 7O and o2 as
U{Qibit} = Mg (const.),
Uzg’zﬂbit) _ ng) ®I(2) (bal.),
gEPY e j0) g gt (bzl.), | (9)
Ut = g g ol (bal.),
UPPY e U (= 5,6,7,8)

All these cperators are direct products of single spin cperators. They are thus incapable
of generating entangled states and can be implemented by cperations on individual spins.
A pseudo-Hadamard transformation was performed on all the spins {initially in thermal
equilibrium) prier to the execution of the desired U; transformations. The two constant
functions correspond to the ‘do-nothing’ operation, experimentally, The NMR implemen-
tation of the balanced functions U™ and UF™ involves rotations by # about the z-uxis
in the single-spin subspaces of spins | and 2 regpectively, and have been achieved using
composile-z pulses (eq. (8)). The UP™ transformation too, does not require the scalar
J spin interaction and is implemented as successive 7 rotations about the z-axes of spins
L and 2 respectively. The balanced functions are distinguished by cne {or both) the spins
being out-of-phase with the rest of the NMR spectrum (figure 3). Only half the total num-
ber of functions have been shown in the one and two-qubit cases, as the others are merely
negatives of these, and lead to the same spectral patterns (spectra not shown),

The three-qubit DT algorithm affords the simplest example where quantum entanglement
plays a definitive role in the computation. We reiterate here, that a computation is truly
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quantum in character only when entanglement 18 present. The task here is to implement 72
unitary transformations, the explicit operator forms for 9 of which are

U(Hm = W e g % (const.),
z;j B a0 e T e 1 (bal),
U( = W ey UEH) {bal.),
{45 i ng) i\jogz)@ﬂ?‘) (bal.),
ol = g o g 6l (bal),
Ut = Lot @ (10 @ I 4 gl )wﬂ
) T Y e Ot } (bal),

U§3—1Jil;) _ %Ugﬁ) @ (I @ I 4 g(“ @ I (3)

+ T g g i g E ) (bal),
Ué:ﬂ—bib) -~ %GES) @ (I @ J2 4 g( 0 I

+ T @ gt = D g 42 3 (bal),

@I @G 4 (g ®gat®

+7(3-bit) 1, (1)
Us = 3“( Oz
ool @ I® 4 I“ @t @ e (bal).

(10

The operators U™ U8 can be decomposed as direct products of single-spin opera-
tors and are tshus non- entalwlmv transformations. The operators UF -G cannot be
decomposed as direct products of single-spin operators and are hence caqulc of gener-
ating entangled states from non-entangled ones. The eperators U™, UF™, and D“ o
are enlangling in different twoe-spin subspaces and can be factored as dixect products of a
single-spin operator and & two-particie entangling transformation. They can thus generate
states 1n which two qubits are entangled, with the third qubit remaining non-entangied with
either of them. On the other hand, the transformation U™ does not allow any such sim-
plifications. It is maximally entangling and leads to states that are three-qubit entangled.
These 9 functions are thus divided into three categories namely, non-entangling, two-qubit
entangling, and maximally {three-qubit) entangling. The remaining functions are similar
in form, and can be classed into one or the other of these categories.

The result of experimentally applying the non-entangling transfarmations U178,
after a pseudo-Hadamard transformation on a thermal equilibrium state, is shown in fig-
ure 4. The constant function U™ is the unit operator, and corresponds to the ‘no pulse’
or the ‘do-nothing’ operation. The balanced functions US™ and UF™ correspond to a
rotation by the angle w about the z-axis of the first and the third spins respectively, with-
out perturbing the other spins. This has been achieved by ¢ s [m]. pulse in
each case, using composile z-pulses {eq. (8)). The spectramm is categorized by the spin in
guestion being out-of-phase with the rest of the spectrum. The transformation UJ™ has
been implemented by two spin-selective [7r], pulses applied consecutively on the first and
the second spins respectively, and leads o a spectrum with both these spins being ouwt-of-
phase with the third. The non-entangling balanced function Ug™™, has been implemented
by successive spin-selective [w], pulses on all the three spins,

The two-qubit entangling transformation U™, is achieved by the pulse sequence

[71'/2}:) irr/zﬁj (/%) me h]z
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Figure 4, The refined DI algorithm for three qubits, implemented on 2,3-dibromepro-
picnic acid. The functions shown are all non-entangling in nature.

where Tyy = 1/Jp3 and 1, 2 and 3 are qubit labels. The operators US™ and U™ corre-

spond to cyclic permutations of the qubits. The spin-selective 7 pulses in the middie of the
free evolution period 23 refocus the chemical shifi evolution. The pulse sequence (applied
after a pseudo-Hadamard transformation on ail three qubits in a thermal initial state) re-
sults in a density matrix with the product operator form —I1 4 27252 4 27213 leading to a
spectrum with the multiplet of the first qubit inverted, and an antiphase doublet of doublet
pattern for the other two qubits (figure 5). The three-qubit entangling function g ig
implemented by the pulse sequence

T12/2) o (matr2s)/2

[, (wly —— [« %2

leading to an antiphase spectral pattern for all three qubits, corvesponding to the product op-
erators 27, IZ 4202 15 +4 T2 T2 T2 (figure 5). The spectra in figure 5 suffer from phase distor-
tions arising from the inaccurate refocusing of the chemical shifts during the 7 periods, and
J-evelution during long spin-selective composite-z pulses ([r]. = fr /2L [l /2], =
42 msec).

This implementation of the DJ algorithm does nol require the initial preparation of the
spins in a pseudo-pure state, since the thermal equilibrivm state serves equally well as a
good initial stale. The observable spectral result is the same in both cases, though begin-
ning with a pseudo-pure state creales some {undetectable) multiple-quantum coherences.
Further, it is interesting to note that the application of an entangling transformation to an
unentangled state does not always lead o an entangled state. In particular, for the three-hit
[B3J algorithm implemented on thermal initial states, the final output state {carrying infor-
mation about the function’s constant or balanced nature), is unentangled, even though some
of the unitary transformations required are entangling in nature.

/2 2
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Tigure 5. Entangling balanced functions implemented on the three-qubit system of
2.3-dibromoprapionic acid.

The final pseudo-Hadamard transformation to extract the constant or balanced nature
of the function (figure 1) is cancetled by the (90} read-out pulse usually used in NMR
experiments, and the computation essentially culminates in the application of the desired
[J; function after the first pseuclo-Hadamard transformation.

A modification to the usual DJ algorithm enabled an n-bit implementation using n
qubits. The required unitary transformations were tailored (o eliminate the need for the
extra qubit, and the modified DI algorithm was tested experimentaily for one, two and
three qubits. While the one and two qubit cases use non-entangling unitary transforma-
tions, it was noted that for three (or more) qubits, mutti-particle entangling transformations
are essential. The NMR implementation of such entangling transformations requires the
presence and manipulation of spin—spin interactions [197.
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