1,222 research outputs found

    Immunogenetics in SARS: a case-control study.

    Get PDF
    Key Messages: 1. Human leukocyte antigen (HLA) genotypes from 102 SARS patients (susceptible) and 108 SARS contacts (resistant) were obtained. 2. Allelic frequencies of the Class I (HLA-A, -B, and -Cw) and Class II (HLA-DR and -DQ) genes from these genetically unrelated subjects were compared. 3. A significantly higher frequency of DRB4*01010101 was found in the SARS-susceptible than SARS-resistant group. In contrast, significantly higher frequencies of HLA-B*1502 and HLADRB3*030101 were found in the SARS-resistant than SARSsusceptible group. However, none of these associations was significant after Bonferroni correction. Further, analysis of 10/36 genetically related families did not reveal any HLA alleles associated with SARS susceptibility or resistance. 4. We could not confirm previous findings of an HLA association with susceptibility or resistance to SARS. The significance of these associations needs to be validated by further independent studies.published_or_final_versio

    Functional role of ICAM-3 polymorphism in genetic susceptibility to SARS infection.

    Get PDF
    Key Messages 1. Severe acute respiratory syndrome (SARS) patients who are homozygous for intercellular adhesion molecule-3 (ICAM-3) Gly143 showed significant association with higher lactate dehydrogenase levels and lower total white blood cell counts on admission. 2. In vitro functional studies demonstrated low level binding of ICAM-3 to DC-SIGN and a wide variation in T-cell response of the wild-type ICAM-3 genotype.published_or_final_versio

    Localization of hRad9 in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>hRad9 </it>is a cell cycle checkpoint gene that is up-regulated in breast cancer. We have previously shown that the mRNA up-regulation correlated with tumor size and local recurrence. Immunohistochemical studies were made to better define the role of <it>hRad9 </it>in breast carcinogenesis.</p> <p>Methods</p> <p>Localisation of hRad9 protein were performed on paired tumor and normal breast tissues. Immunoblotting with and without dephosphorylation was used to define the protein isolated from breast cancer cells.</p> <p>Results</p> <p>Increased hRad9 protein was observed in breast cancer cells nucleus compared to non-tumor epithelium. This nuclear protein existed in hyperphosphorylated forms which may be those of the hRad9-hRad1-hHus1 complex.</p> <p>Conclusion</p> <p>Finding of hyperphosphorylated forms of hRad9 in the nucleus of cancer cells is in keeping with its function in ameliorating DNA instability, whereby it inadvertently assists tumor growth.</p

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    A second generation genetic map for rainbow trout (Oncorhynchus mykiss)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic maps characterizing the inheritance patterns of traits and markers have been developed for a wide range of species and used to study questions in biomedicine, agriculture, ecology and evolutionary biology. The status of rainbow trout genetic maps has progressed significantly over the last decade due to interest in this species in aquaculture and sport fisheries, and as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. We constructed a second generation genetic map for rainbow trout using microsatellite markers to facilitate the identification of quantitative trait loci for traits affecting aquaculture production efficiency and the extraction of comparative information from the genome sequences of model fish species.</p> <p>Results</p> <p>A genetic map ordering 1124 microsatellite loci spanning a sex-averaged distance of 2927.10 cM (Kosambi) and having 2.6 cM resolution was constructed by genotyping 10 parents and 150 offspring from the National Center for Cool and Cold Water Aquaculture (NCCCWA) reference family mapping panel. Microsatellite markers, representing pairs of loci resulting from an evolutionarily recent whole genome duplication event, identified 180 duplicated regions within the rainbow trout genome. Microsatellites associated with genes through expressed sequence tags or bacterial artificial chromosomes produced comparative assignments with tetraodon, zebrafish, fugu, and medaka resulting in assignments of homology for 199 loci.</p> <p>Conclusion</p> <p>The second generation NCCCWA genetic map provides an increased microsatellite marker density and quantifies differences in recombination rate between the sexes in outbred populations. It has the potential to integrate with cytogenetic and other physical maps, identifying paralogous regions of the rainbow trout genome arising from the evolutionarily recent genome duplication event, and anchoring a comparative map with the zebrafish, medaka, tetraodon, and fugu genomes. This resource will facilitate the identification of genes affecting traits of interest through fine mapping and positional cloning of candidate genes.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore