9 research outputs found

    Satellites Form Fast & Late: a Population Synthesis for the Galilean Moons

    Full text link
    The satellites of Jupiter are thought to form in a circumplanetary disc. Here we address their formation and orbital evolution with a population synthesis approach, by varying the dust-to-gas ratio, the disc dispersal time-scale and the dust refilling time-scale. The circumplanetary disc initial conditions (density and temperature) are directly drawn from the results of 3D radiative hydrodynamical simulations. The disc evolution is taken into account within the population synthesis. The satellitesimals were assumed to grow via streaming instability. We find that the moons form fast, often within 104 yr, due to the short orbital time-scales in the circumplanetary disc. They form in sequence, and many are lost into the planet due to fast type I migration, polluting Jupiter’s envelope with typically 15 Earth-masses of metals. The last generation of moons can form very late in the evolution of the giant planet, when the disc has already lost more than the 99 per cent of its mass. The late circumplanetary disc is cold enough to sustain water ice, hence not surprisingly 85 per cent of the moon population has icy composition. The distribution of the satellite masses is peaking slightly above Galilean masses, up until a few Earth-masses, in a regime which is observable with the current instrumentation around Jupiter-analogue exoplanets orbiting sufficiently close to their host stars. We also find that systems with Galilean-like masses occur in 20 per cent of the cases and they are more likely when discs have long dispersion time-scales and high dust-to-gas ratios

    Collision velocity of dust grains in self-gravitating protoplanetary discs

    No full text
    We have conducted the first comprehensive numerical investigation of the relative velocity distribution of dust particles in self-gravitating protoplanetary discs with a view to assessing the viability of planetesimal formation via direct collapse in such environments. The viability depends crucially on the large sizes that are preferentially collected in pressure maxima produced by transient spiral features (Stokes numbers, St ∌ 1); growth to these size scales requires that collision velocities remain low enough that grain growth is not reversed by fragmentation. We show that, for a single-sized dust population, velocity driving by the disc's gravitational perturbations is only effective for St > 3, while coupling to the gas velocity dominates otherwise. We develop a criterion for understanding this result in terms of the stopping distance being of the order of the disc scaleheight. Nevertheless, the relative velocities induced by differential radial drift in multi-sized dust populations are too high to allow the growth of silicate dust particles beyond St ∌ 10- 2 or 10-1 (10 cm to m sizes at 30 au), such Stokes numbers being insufficient to allow concentration of solids in spiral features. However, for icy solids (which may survive collisions up to several 10 m s-1), growth to St ∌ 1 (10 m size) may be possible beyond 30 au from the star. Such objects would be concentrated in spiral features and could potentially produce larger icy planetesimals/comets by gravitational collapse. These planetesimals would acquire moderate eccentricities and remain unmodified over the remaining lifetime of the disc.This work has been supported by the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG and has used the DIRAC Shared Memory Processing and DiRAC Data Analytic systems at the University of Cambridge. The DIRAC Shared Memory Processing system is operated by the COSMOS Project at the Department of Applied Mathematics and Theoretical Physics and was funded by BIS National E-infrastructure capital grant ST/J005673/1, STFC capital grant ST/H008586/1. The DiRAC Data Analytic system was funded by BIS National E-infrastructure capital grant ST/J005673/1 and STFC capital grant ST/H008586/1. Both systems are on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk), funded by the STFC DiRAC Operations grant ST/K00333X/1.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stw48

    Implications of the interstellar object 1I/'Oumuamua for planetary dynamics and planetesimal formation

    Get PDF
    'Oumuamua, the first bona-fide interstellar planetesimal, was discovered passing through our Solar System on a hyperbolic orbit. This object was likely dynamically ejected from an extrasolar planetary system after a series of close encounters with gas giant planets. To account for 'Oumuamua's detection, simple arguments suggest that ~1 Earth-mass of planetesimals are ejected per Solar mass of Galactic stars. However, that value assumes mono-sized planetesimals. If the planetesimal mass distribution is instead top-heavy the inferred mass in interstellar planetesimals increases to an implausibly high value. The tension between theoretical expectations for the planetesimal mass function and the observation of 'Oumuamua can be relieved if a small fraction (~1%) of planetesimals are tidally disrupted on the pathway to ejection into 'Oumuamua-sized fragments. Using a large suite of simulations of giant planet dynamics including planetesimals, we confirm that roughly 1% of planetesimals pass within the tidal disruption radius of a gas giant on their pathway to ejection. 'Oumuamua may thus represent a surviving fragment of a disrupted planetesimal. Finally, we argue that an asteroidal composition is dynamically disfavoured for 'Oumuamua, as asteroidal planetesimals are both less abundant and ejected at a lower efficiency than cometary planetesimals

    The Delivery of Water During Terrestrial Planet Formation

    No full text
    The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. We review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets
    corecore