523 research outputs found

    Variation at the TRIM11 Locus Modifies Progressive Supranuclear Palsy Phenotype

    Get PDF
    Objective The basis for clinical variation related to underlying progressive supranuclear palsy (PSP) pathology is unknown. We performed a genome‐wide association study (GWAS) to identify genetic determinants of PSP phenotype. Methods Two independent pathological and clinically diagnosed PSP cohorts were genotyped and phenotyped to create Richardson syndrome (RS) and non‐RS groups. We carried out separate logistic regression GWASs to compare RS and non‐RS groups and then combined datasets to carry out a whole cohort analysis (RS = 367, non‐RS = 130). We validated our findings in a third cohort by referring to data from 100 deeply phenotyped cases from a recent GWAS. We assessed the expression/coexpression patterns of our identified genes and used our data to carry out gene‐based association testing. Results Our lead single nucleotide polymorphism (SNP), rs564309, showed an association signal in both cohorts, reaching genome‐wide significance in our whole cohort analysis (odds ratio = 5.5, 95% confidence interval = 3.2–10.0, p = 1.7 × 10−9). rs564309 is an intronic variant of the tripartite motif‐containing protein 11 (TRIM11) gene, a component of the ubiquitin proteasome system (UPS). In our third cohort, minor allele frequencies of surrogate SNPs in high linkage disequilibrium with rs564309 replicated our findings. Gene‐based association testing confirmed an association signal at TRIM11. We found that TRIM11 is predominantly expressed neuronally, in the cerebellum and basal ganglia. Interpretation Our study suggests that the TRIM11 locus is a genetic modifier of PSP phenotype and potentially adds further evidence for the UPS having a key role in tau pathology, therefore representing a target for disease‐modifying therapies

    SHP-1 Associates with Both Platelet-derived Growth Factor Receptor and the p85 Subunit of Phosphatidylinositol 3-Kinase*

    Get PDF
    The Src homology 2 (SH2)-containing protein tyrosine phosphatase 1, SHP-1, is highly expressed in all hematopoietic cells as well as in many non-hematopoietic cells, particularly in some malignant epithelial cell lines. In hematopoietic cells, SHP-1 negatively regulates multiple cytokine receptor pathways. The precise function and the targets of SHP-1 in non-hematopoietic cells, however, are largely unknown. Here we demonstrate that SHP-1 associates with both the tyrosine-phosphorylated platelet-derived growth factor (PDGF) receptor and the p85 subunit of phosphatidylinositol 3-kinase in MCF-7 and TRMP cells. Through the use of mutant PDGF receptors and performing peptide competition for immunoprecipitation, it was determined that SHP-1 independently associates with the PDGF receptor and p85 and that its N-terminal SH2 domain is directly responsible for the interactions. Overexpression of SHP-1 in TRMP cells transfected with the PDGF receptor markedly inhibited PDGF-induced c-fos promoter activation, whereas the expression of three catalytically inactive SHP-1 mutants increased the c-fos promoter activation in response to PDGF stimulation. These results indicate that SHP-1 might negatively regulate PDGF receptor-mediated signaling in these cells. Identification of the association of SHP-1 with the PDGF receptor and p85 in MCF-7 and TRMP cells furthers our understanding of the function of SHP-1 in non-hematopoietic cells

    Mitochondrial Cell Death Control in Familial Parkinson Disease

    Get PDF
    Many sporadic cases of Parkinsons disease have mutations in the PINK protein kinase, whose substrate is now revealed to be a protein that protects mitochondria from oxidative stress

    Which ante mortem clinical features predict progressive supranuclear palsy pathology?

    Get PDF
    BACKGROUND: Progressive supranuclear palsy (PSP) is a neuropathologically defined disease presenting with a broad spectrum of clinical phenotypes. OBJECTIVE: To identify clinical features and investigations that predict or exclude PSP pathology during life, aiming at an optimization of the clinical diagnostic criteria for PSP. METHODS: We performed a systematic review of the literature published since 1996 to identify clinical features and investigations that may predict or exclude PSP pathology. We then extracted standardized data from clinical charts of patients with pathologically diagnosed PSP and relevant disease controls and calculated the sensitivity, specificity, and positive predictive value of key clinical features for PSP in this cohort. RESULTS: Of 4166 articles identified by the database inquiry, 269 met predefined standards. The literature review identified clinical features predictive of PSP, including features of the following 4 functional domains: ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction. No biomarker or genetic feature was found reliably validated to predict definite PSP. High-quality original natural history data were available from 206 patients with pathologically diagnosed PSP and from 231 pathologically diagnosed disease controls (54 corticobasal degeneration, 51 multiple system atrophy with predominant parkinsonism, 53 Parkinson's disease, 73 behavioral variant frontotemporal dementia). We identified clinical features that predicted PSP pathology, including phenotypes other than Richardson's syndrome, with varying sensitivity and specificity. CONCLUSIONS: Our results highlight the clinical variability of PSP and the high prevalence of phenotypes other than Richardson's syndrome. The features of variant phenotypes with high specificity and sensitivity should serve to optimize clinical diagnosis of PSP. © 2017 International Parkinson and Movement Disorder Society

    Symptomatology in 4-repeat tauopathies is associated with data-driven topology of [18F]-PI-2620 tau-PET signal

    Get PDF
    In recent years in vivo visualization of tau deposits has become possible with various PET radiotracers. The tau tracer [18F]PI-2620 proved high affinity both to 3-repeat/4-repeat tau in Alzheimer's disease as well as to 4repeat tau in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). However, to be clinically relevant, biomarkers should not only correlate with pathological changes but also with disease stage and progression. Therefore, we aimed to investigate the correlation between topology of [18F]PI-2620 uptake and symptomatology in 4-repeat tauopathies. 72 patients with possible or probable 4-repeat tauopathy, i.e. 31 patients with PSP-Richardson's syndrome (PSP-RS), 30 with amyloid-negative CBS and 11 with PSP-non-RS/CBS, underwent [18F]PI-2620-PET. Principal component analysis was performed to identify groups of similar brain regions based on 20-40 min p.i. regional standardized uptake value ratio z-scores. Correlations between component scores and the items of the PSP Rating Scale were explored. Motor signs like gait, arising from chair and postural instability showed a positive correlation with tracer uptake in mesial frontoparietal lobes and the medial superior frontal gyrus and adjacent anterior cingulate cortex. While the signs disorientation and bradyphrenia showed a positive correlation with tracer uptake in the parietooccipital junction, the signs disorientation and arising from chair were negatively correlated with tau-PET signal in the caudate nucleus and thalamus. Total PSP Rating Scale Score showed a trend towards a positive correlation with mesial frontoparietal lobes and a negative correlation with caudate nucleus and thalamus. While in CBS patients, the main finding was a negative correlation of tracer binding in the caudate nucleus and thalamus and a positive correlation of tracer binding in medial frontal cortex with gait and motor signs, in PS

    Targeting cyclin D3/CDK6 activity for treatment of Parkinson’s disease.

    Get PDF
    30 p.-7 fig.-1 tab.At present, treatment for Parkinson’s disease (PD) is only symptomatic, therefore it is important to identify new targets tackling the molecular causes of the disease. We previously found that lymphoblasts from sporadic PD patients display increased activity of the cyclin D3/CDK6/pRb pathway and higher proliferation than control cells. These features were considered systemic manifestations of the disease, as aberrant activation of cell cycle is involved in neuronal apoptosis. The main goal of this work was to elucidate whether the inhibition of cyclin D3/CDK6-associated kinase activity could be useful in PD treatment. For this purpose, we investigated the effects of two histone deacetylase (HDAC) inhibitors, suberoylanilide hydroxamic acid (SAHA) and sodium butyrate (NaB), and the m-TOR inhibitor rapamycin on cell viability and cyclin D3/CDK6 activity. Moreover, the potential neuroprotective action of these drugs was evaluated in 6-hydroxy-dopamine (6-OHDA) treated dopaminergic SH-SY5Y cells and primary rat mesencephalic cultures. Here we report that both compounds normalized the proliferative activity of PD lymphoblasts and reduced the 6-OHDA-induced cell death in neuronal cells by preventing the overactivation of the cyclin D3/CDK6/pRb cascade.Considering that these drugs are already used in clinic for treatment of other diseases with good tolerance, it is plausible that they may serve as novel therapeutic drugs for PD.This work has been supported by grants from Ministerio de Economía y Competitividad (SAF2011-28603) and Fundación Ramón Areces.Peer reviewe

    BDNF Val66Met modifies the risk of childhood trauma on obsessive-compulsive disorder

    Get PDF
    Childhood trauma has been linked to the development of later psychopathology, including obsessive-compulsive disorder (OCD). Although evidence exists to suggest that genetic and environmental factors are involved in the aetiology of OCD, little attention has been paid to the interactions that exist between genes and environment. The aim of this study was to investigate gene-by-environment interactions between childhood trauma and the BDNF Val66Met variant in patients with OCD. Childhood trauma was assessed in 134 OCD patients and 188 controls using the Childhood Trauma Questionnaire (CTQ). Linear regression models were used for statistical analyses. Geneeenvironment interactions were estimated by including a combined genotype and CTQ score in the models as interaction terms. All analyses were adjusted for age, gender, CTQ minimisation-denial score and home language by including them in the logistic regression models as covariates. Childhood trauma, specifically emotional abuse and neglect, increased the odds of having OCD significantly (p < 0.001). Although no significant association was observed between BDNF Val66Met and the development of OCD, interaction analysis indicated that the BDNF Met-allele interacted with childhood emotional abuse to increase the risk of OCD significantly in a dose-dependent manner (p < 0.024). To our knowledge, this is one of the first studies to investigate geneeenvironment interactions in OCD, and the findings indicate the importance of collating genetic and environmental variables in future studies.Web of Scienc

    Clinical Conditions “Suggestive of Progressive Supranuclear Palsy”—Diagnostic Performance

    Get PDF
    Background: The Movement Disorder Society diagnostic criteria for progressive supranuclear palsy introduced the diagnostic certainty level “suggestive of progressive supranuclear palsy” for clinical conditions with subtle signs, suggestive of the disease. This category aims at the early identification of patients, in whom the diagnosis may be confirmed as the disease evolves. Objective: To assess the diagnostic performance of the defined clinical conditions suggestive of progressive supranuclear palsy in an autopsy-confirmed cohort. Methods: Diagnostic performance of the criteria was analyzed based on retrospective clinical data of 204 autopsy-confirmed patients with progressive supranuclear palsy and 216 patients with other neurological diseases. Results: The conditions suggestive of progressive supranuclear palsy strongly increased the sensitivity compared to the National Institute of Neurological Disorders and Stroke and Society for Progressive Supranuclear Palsy criteria. Within the first year after symptom onset, 40% of patients with definite progressive supranuclear palsy fulfilled criteria for suggestive of progressive supranuclear palsy. Two-thirds of patients suggestive of progressive supranuclear palsy evolved into probable progressive supranuclear palsy after an average of 3.6 years. Application of the criteria for suggestive of progressive supranuclear palsy reduced the average time to diagnosis from 3.8 to 2.2 years. Conclusions: Clinical conditions suggestive of progressive supranuclear palsy allow earlier identification of patients likely to evolve into clinically possible or probable progressive supranuclear and to have underlying progressive supranuclear palsy pathology. Further work needs to establish the specificity and positive predictive value of this category in real-life clinical settings, and to develop specific biomarkers that enhance their diagnostic accuracy in early disease stages

    Distribution patterns of tau pathology in progressive supranuclear palsy

    Get PDF
    Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. W

    Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain

    Get PDF
    Our knowledge of the transcriptome has become much more complex since the days of the central dogma of molecular biology. We now know that splicing takes place to create potentially thousands of isoforms from a single gene, and we know that RNA does not always faithfully recapitulate DNA if RNA editing occurs. Collectively, these observations show that the transcriptome is amazingly rich with intricate regulatory mechanisms for overall gene expression, splicing, and RNA editing. Genetic variability can play a role in controlling gene expression, which can be identified by examining expression quantitative trait loci (eQTLs). eQTLs are genomic regions where genetic variants, including single nucleotide polymorphisms (SNPs) show a statistical association with expression of mRNA transcripts. In humans, many SNPs are also associated with disease, and have been identified using genome wide association studies (GWAS) but the biological effects of those SNPs are usually not known. If SNPs found in GWAS are also found in eQTLs, then one could hypothesize that expression levels may contribute to disease risk. Performing eQTL analysis with GWAS SNPs in both blood and brain, specifically the frontal cortex and the cerebellum, we found both shared and tissue unique eQTLS. The identification of tissue-unique eQTLs supports the argument that choice of tissue type is important in eQTL studies (Paper I). Aging is a complex process with the mechanisms underlying aging still being poorly defined. There is evidence that the transcriptome changes with age, and hence we used the brain dataset from our first paper as a discovery set, with an additional replication dataset, to investigate any aging-gene expression associations. We found evidence that many genes were associated with aging. We further found that there were more statically significant expression changes in the frontal cortex versus the cerebellum, indicating that brain regions may age at different rates. As the brain is a heterogeneous tissue including both neurons and non-neuronal cells, we used LCM to capture Purkinje cells as a representative neuronal type and repeated the age analysis. Looking at the discovery, replication and Purkinje cell datasets we found five genes with strong, replicated evidence of age-expression associations (Paper II). Being able to capture and quantify the depth of the transcriptome has been a lengthy process starting with methods that could only measure a single gene to genome-wide techniques such as microarray. A recently developed technology, RNA-Seq, shows promise in its ability to capture expression, splicing, and editing and with its broad dynamic range quantification is accurate and reliable. RNA-Seq is, however, data intensive and a great deal of computational expertise is required to fully utilize the strengths of this method. We aimed to create a small, well-controlled, experiment in order to test the performance of this relatively new technology in the brain. We chose embryonic versus adult cerebral cortex, as mice are genetically homogenous and there are many known differences in gene expression related to brain development that we could use as benchmarks for analysis testing. We found a large number of differences in total gene expression between embryonic and adult brain. Rigorous technical and biological validation illustrated the accuracy and dynamic range of RNA-Seq. We were also able to interrogate differences in exon usage in the same dataset. Finally we were able to identify and quantify both well-known and novel A-to-I edit sites. Overall this project helped us develop the tools needed to build usable pipelines for RNA-Seq data processing (Paper III). Our studies in the developing brain (Paper III) illustrated that RNA-Seq was a useful unbiased method for investigating RNA editing. To extend this further, we utilized a genetically modified mouse model to study the transcriptomic role of the RNA editing enzyme ADAR2. We found that ADAR2 was important for editing of the coding region of mRNA as a large proportion of RNA editing sites in coding regions had a statistically significant decrease in editing percentages in Adar2 -/-Gria2 R/R mice versus controls. However, despite indications in the literature that ADAR2 may also be involved in splicing and expression regulatory machinery we found no changes in gene expression or exon utilization in Adar2 -/-Gria2 R/R mice as compared to their littermate controls (Paper IV). In our final study, based on the methods developed in Papers III and IV, we revisited the idea of age related gene expression associations from Paper II. We used a subset of human frontal cortices for RNA sequencing. Interestingly we found more gene expression changes with aging compared to the previous data using microarrays in Paper II. When the significant gene lists were analysed for gene ontology enrichment, we found that there was a large number of downregulated genes involved in synaptic function while those that were upregulated had enrichment in immune function. This dataset illustrates that the aging brain may be predisposed to the processes found in neurodegenerative diseases (Paper V)
    corecore