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Abstract
Genome wide association studies have nominated many genetic variants for common human traits,
including diseases, but in many cases the underlying biological reason for a trait association is
unknown. Subsets of genetic polymorphisms show a statistical association with transcript
expression levels, and have therefore been nominated as expression quantitative trait loci (eQTL).
However, many tissue and cell types have specific gene expression patterns and so it is not clear
how frequently eQTLs found in one tissue type will be replicated in others. In the present study
we used two appropriately powered sample series to examine the genetic control of gene
expression in blood and brain. We find that while many eQTLs associated with human traits are
shared between these two tissues, there are also examples where blood and brain differ, either by
restricted gene expression patterns in one tissue or because of differences in how genetic variants
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are associated with transcript levels. These observations suggest that design of eQTL mapping
experiments should consider tissue of interest for the disease or other trait studied.

Introduction
Genome-wide association (GWA) studies have provided novel insights into human traits by
identifying single nucleotide polymorphisms (SNPs) associated with disease, including type
1 diabetes, coronary artery disease, HIV-1 infection and type 2 diabetes (Fellay et al., 2007;
Preuss et al., 2010; Scott et al., 2007; Sladek et al., 2007; Steinthorsdottir et al., 2007; Todd
et al., 2007a; Yang et al., 2010; Zeggini et al., 2008), or other phenotypes. Because GWAS
identify loci rather than functional variants, most GWAS have provided limited insights into
underlying mechanisms (Hindorff et al., 2009). Therefore, annotating the possible functional
effects of genetic risk variants is important in understanding genomic data.

Mapping of expression quantitative trait loci (eQTL) is one way to demonstrate that a risk
variant within a locus has a functional effect on gene expression (Cheung et al., 2005;
Morley et al., 2004; Myers et al., 2007; Stranger et al., 2007). eQTL analysis is performed
by examining the association of each SNP with expression of mRNA transcripts. In general,
eQTL effects are stronger for SNPs and transcripts that are physically close to each other
(Gibbs et al., 2010). Trait associated SNPs from GWAS have been proposed to be more
likely associated with expression differences than other SNPs (Nicolae et al., 2010). Such
studies have generally been performed with transformed cell lines but eQTLs can also be
identified in liver (Schadt et al., 2008), kidney (Wheeler et al., 2009), cell lines from asthma
patients (Dixon et al., 2007; Moffatt et al., 2007) blood (Nalls et al., 2011a), subcutaneous
adipose tissue (Emilsson et al., 2008) and brain (Gibbs et al., 2010; Heinzen et al., 2008; Liu
et al., 2010a; Myers et al., 2007; Webster et al., 2009). For at least some loci, eQTLs are
found consistently in both transformed cells and in primary tissues (Bullaughey K, 2009).
Overall, this data might suggest that functional annotation of GWAS loci can be performed
in any convenient tissue.

Studying brain tissue is particularly challenging because these tissue samples have to be
collected post mortem and there is a high degree of cellular heterogeneity. Although some
eQTLs have been nominated for brain diseases, such as MAPT in Parkinson’s disease (PD)
and progressive supranuclear palsy (PSP) (Hoglinger et al., 2011; Nalls et al., 2011b; Tobin
et al., 2008; Vandrovcova et al., 2010), many nominated loci for brain phenotypes are not
functionally annotated.

To explore the tissue specificity of eQTLs, we analyzed expression in brain and blood using
SNPs abstracted from the NHGRI catalog of GWAS. We specifically wanted to address
whether it is necessary to examine brain tissue to detect eQTLs for brain traits, including
neurological diseases and psychiatric events, or whether the same information could be
obtained from a more accessible tissue such as blood. We find that while many eQTLs are
shared between blood and brain, there are specific instances, not always simply related to
tissue specific gene expression levels, where the tissue studied limits detection of eQTLs.

Material and Methods
Samples

Fresh, frozen tissue samples from the frontal lobe of the cerebral cortex and from the
cerebellum were obtained from neurologically normal Caucasian subjects. Genomic DNA
was extracted using phenol-chloroform and RNA using Trizol from subdissected samples
(100–200mg). Peripheral blood specimens were collected using PAXgene tubes. RNA was
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extracted from peripheral blood samples using the PAXgene Blood mRNA kit (Qiagen,
Crawley, UK) according to the manufacturer’s instructions.

Genotyping and Imputation
Genotyping was performed using the Illumina Infinium HumanHap550 v3, Human610-
Quad v1 or Human660W-Quad v1 Infinium Beadchip and common SNPs across all
platforms were identified for each sample. SNPs were excluded if they showed < 95%
genotyping success rate per SNP, minor allele frequency (MAF) < 0.01 or Hardy-Weinberg
equilibrium (HWE) p-value < 1E-7. Quality control was carried out using PLINK v1.07 for
each cohort separately prior to imputation and was determined by comparing the subjects
reported gender with the genotypic gender determined using PLINK’s check sex algorithm.

Ethnicity and cryptic relatedness was determined using Identity-by-State (IBS) clustering
and multidimensional scaling analyses within PLINK using genotypes that had been merged
with data from HapMap Phase III, ASW, TSI, CEU, JPT, CHB and YRI populations
[http://hapmap.ncbi.nlm.nih.gov/]. The subset of SNPs used were shared across studies,
using only common SNPs that are not correlated within a 50 SNP sliding window at an r2 >
0.20, with each window overlapping by 5 SNPs. Samples were clustered using multi-
dimensional scaling, removing outliers > 3 standard deviations from the mean component
vector estimates for C1 or C2 for the combined CEU and TSI samples. Cryptically related
samples were excluded after pairwise identical by descent estimates were calculated,
excluding any samples sharing greater than a 0.15 proportion of alleles.

Markov Chain based haplotyper (MACH 1.0.16) was used to impute non-assayed genotypes
for blood and brain datasets independently using the June 2010 release of the 1000 Genomes
Project build-36 reference panel, using default settings for MACH. Imputed SNPs were
excluded from the analysis if their minor allele frequency (MAF) was <0.01 and if their r2

was <0.3

GWAS SNPs
Trait and disease associated SNPs were extracted from the NHGRI catalog of published
GWAS at http://www.genome.gov/gwastudies/ on July 30th 2011. Analyses was restricted to
the following criteria: discovery p-value < 5E-08, initial sample size >1000 (or 1000 cases
in binomial analyses), replication sample size >500 (or 500 cases in binomial analyses),
number of SNPs >100,000, samples of European ancestry and risk allele frequency of
SNP(s) greater or equal to 0.01.

Expression Profiling
Expression profiling was performed largely as previously described (Gibbs et al., 2010).
RNA was biotinylated and amplified using the Illumina® TotalPrep-96 RNA Amplification
Kit and directly hybridized onto HumanHT-12_v3 Expression BeadChips. Where possible,
the same RNA samples were used from our previous study that used HumanRef8 Expression
BeadChips. Raw intensity values for each probe were normalized using cubic spline in
BeadStudio (Illumina) then log2 transformed. Individual probes were included in analysis if
they were detected (P<0.01) in more than 95% of samples in the series.

To define probes within +/− 1MB of SNPs, probes were re-annotated using ReMOAT
(http://www.compbio.group.cam.ac.uk/Resources/Annotation/). Ambiguous probes that
mapped to multiple positions, or were identified as having design problems in ReMOAT,
were excluded from subsequent analyses. To remove potential bias resulting from
polymorphisms, all probes that included an analyzed SNP within the 50mer probe were
removed.
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Expression QTL Analyses
Starting with 447 subjects in the brain series, after data normalization and quality control,
the brain mRNA dataset included 399 samples and ~9000 mRNA probes that were detected
in >95% of all samples. The blood dataset started with 712 samples, of which 501 passed all
our QC steps; 5094 mRNA probes were detected in >95% of samples. In each brain region,
mRNA probes within 500kb of the chromosomal location of each SNP were incorporated
into linear regression modeling using MACH2QTLv1.08. Estimates of the association
between the allelic dose of each SNP as a predictor of proximal gene expression levels were
generated. These linear regression models were adjusted for biological covariates of age at
death and gender, the first 2 component vectors from multi-dimensional scaling, as well as
methodological covariates including post mortem interval (PMI), tissue bank and
hybridization batch. SNPs with fewer than 3 minor homozygotes detected (based on either
genotyped SNPs or maximum likelihood genotypes from imputation) were excluded from
analyses. A consensus set of results was extracted from the frontal cortex, cerebellum and
blood eQTL datasets with identical overlapping combinations of GWAS SNPs and proximal
cis mRNA probes. Significant associations were determined within each tissue type using a
5% FDR adjustment for multiple testing. Proportions of tested associations were calculated
per tissue based on this subset of the eQTL results, and were compared using simple chi-
squared tests.

Case studies of specific loci
Identical statistical models were utilized to test our ability to detect known-associated
eQTLs in previously published reports in tissues not previously investigated in GWAS.
Results for these loci were mined for all associations within each +/− 500kb region around
top SNPs within each locus from the published GWAS within each tissue.

Results
Power to detect eQTLs in large blood or brain datasets

Directly comparing expression datasets derived from brain and whole blood in human
samples is difficult because brain samples are taken post mortem whereas blood samples are
routinely taken during life. Therefore, we used two large, well-powered series from different
sets of individuals to maximize our ability to find eQTLs in each tissue type. For brain, we
expanded our previous dataset (Gibbs et al., 2010) in frontal cortex and cerebellum and
obtained whole blood from 712 individuals from the InCHIANTI study (Wood et al., 2011).
For consistency, we used the same expression array platform (Illumina HT-12 beadchips
containing 48,000 probes) for all samples. After quality control, the brain mRNA dataset
included 399 samples with data at 9000 probes. The blood dataset included 501 samples
containing expression data from 5094 probes. Following imputation and quality control,
~2.2 million SNPs were available for analysis in all sample sets.

Because the final number of samples within the blood and brain groups differed, we
performed post-hoc power calculations to compare ability to detect eQTLs (Fig. 1). Based
on our previous work in brain (Gibbs et al., 2010), the strength of the association varies
substantially for different eQTLs. Therefore, we estimated power over a range of minor
allele frequencies and of effect sizes for the eQTLs, using Z as a measure of effect size
standard deviations of difference for each minor allele under an additive model. As an
example of power in the two datasets at a realistic pair of these parameters, the blood dataset
had 98.8% power to detect eQTLs at an effect allele frequency of 0.2 and an additive effect
size of Z=0.5 whereas the brain dataset had 93.9% power to detect the same magnitude of
effect. This analysis demonstrates that the difference in power in the two datasets is
minimized as the fraction of true eQTL effect sizes rises. For eQTLs with moderate effect
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sizes (Z>0.2) we were reasonably powered in both series; therefore, we proceeded to
compare the ability to detect eQTLs in both datasets.

Gene expression in blood versus brain in human populations
It is expected that gene expression profiles would be divergent between blood and brain
tissues but similar for two brain regions. To test this, we ranked as percentiles the
normalized gene expression values averaged for all subjects, setting non-detected probes to
zero. Gene expression values were shown to be highly divergent between blood and either
frontal cortex or cerebellum tissue for a large number of genes that were only detected
reliably in one tissue or the other (Fig. 2A,B). In contrast, gene expression was more similar
between frontal cortex and cerebellum and there were fewer uniquely expressed genes (Fig.
2C). Analysis using percentile ranked variance rather than mean values for each probe
yielded similar results (Fig. 2D–F), showing that mean expression and variance in
expression were closer in the two brain regions than in blood.

eQTL discovery for genes expressed in blood and brain
We next examined the relative ability of the three datasets to detect eQTLs from regions
nominated in GWAS. We abstracted SNPs associated with human traits based on the
NHGRI catalog of GWA, yielding 1366 loci. Of these, 783 SNPs passed the criteria of
having a replicated association with traits or diseases and being within 0.5MB of the
chromosomal position of a probe for gene expression. We chose the threshold of 0.5MB
based on previous data (Gibbs et al., 2010) where we saw the average distance between a
SNP and significant eQTL was 121Kb and >90% of significant eQTLs were detected within
0.5MB.

We manually annotated the traits studied in each GWAS as related to blood (176 SNPs),
brain (61 SNPs) or other (546 SNPs) phenotypes (Supplementary file 1). For example, we
annotated traits associated with neurological or psychiatric conditions as “brain” and
markers of subtypes of blood cell markers as “blood”. We then used this list of SNPs to
perform eQTL analysis. We first performed the eQTL analysis in a uniform way by only
considering the subset of probes and SNPs detected in all tissue types, or 2929 SNP:probe
pairs. This analysis identified eQTLs that were highly significant in all three tissues and
additional eQTLs distinctly significant in either blood or brain tissues (Fig. 3). Of the shared
eQTLs, three stood out as highly significant in all three tissues for three SNPs including a
single mRNA probe, ILMN_1695585 that maps to the RPS26 gene on chromosome
12q13.2, within 500KB of three GWAS SNPs associated with Type 1 diabetes (False
discovery rate (FDR) corrected P<1.45×10−38 for association with rs11171739 in the frontal
cortex, P<6.72 ×10−51 in cerebellum and P<9.46 ×10−67 in blood) (Barrett et al., 2009,
2007; Cooper et al., 2008; Hakonarson et al., 2008; Todd et al., 2007b). Additional
significant SNP:probe pairs found in both datasets included SNPs associated with traits such
as mean corpuscular volume (Ganesh et al., 2009), smoking behavior (2010), eye color (Liu
et al., 2010b), plasma levels of liver enzymes(Yuan et al., 2008) and inflammatory bowel
disease (Kugathasan et al., 2008) (Supplementary Table 1). For fifteen SNP:probe
associations that were significant in brain and blood, the direction of effect was consistent
across all three tissues.

A divergent set of eQTLs were found in the blood dataset when compared with cerebellum
and frontal cortex (Fig. 3A,B). Several of these eQTLs were for probe ILMN_1666206,
which maps to the GSDML gene on Chr17q12. These correlations are linked with five
separate GWA studies associating Type 1 diabetes (2007; Barrett et al., 2009; Cooper et al.,
2008; Hakonarson et al., 2008; Todd et al., 2007b), Crohn’s disease (Barrett et al., 2008) and
Ulcerative colitis (McGovern et al., 2010) to the same locus (Supplementary Table 1).

Hernandez et al. Page 5

Neurobiol Dis. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Additionally, the ILMN_1666206 probe has been nominated as underlying an eQTL in
studies of asthma and white blood cell traits associated with a pro-inflammatory state
(Moffatt et al., 2007; Nalls et al., 2011a). The FDR corrected P value for the most
significantly associated SNP, rs2290400, with this probe was 6.41×10−32 in blood but 0.924
and 0.896 in the cerebellum and frontal cortex respectively.

To examine this phenomenon further, we compared all SNPs within the GSDML/ORMDL3
region to expression of ILMN_1666206 in all tissues. Although expression was detected, we
did not find significant associations with any SNPs in the brain, but found strong
associations between probe expression and proximal SNPs in blood tissue (Fig. 4B). This
locus therefore represents an example of a blood-specific eQTL.

Conversely, a subset of SNP:probe pairs reached significance in the brain samples but not in
blood (Fig. 3A,B and Supplementary Table 1). For example, rs713586, which was
nominated for association with body mass index (PMID: 20935630), was significantly
associated with expression of ILMN_1676893 in cerebellum (FDR corrected P=6.09×10−5)
and frontal cortex (FDR corrected P=1.53×10−8) but showed no association in blood (FDR
corrected P=0.89). This probe maps to the adenylate cyclase gene ADCY3 on chromosome
2 (Fig. 4A). Interestingly, variation in ADCY3 has been nominated in a number of GWAS
including for alcohol dependence (Edenberg et al., 2010) and major depression (Wray et al.,
2010).

Overall this data suggests that while some eQTLs are consistent between tissues, there is a
subset where a genetic effect on gene expression exists in one tissue context but not the
other, despite probe detection in both instances.

eQTL discovery for genes with expression restricted to blood or brain
Given that there were differences in gene expression between tissues (Fig. 2), we next
analyzed eQTLs unique to each tissue by examining the association of GWAS SNPs with
expression of probes detected in either blood or brain but not in both (Supplementary Table
2).

In blood, there was a highly significant (FDR corrected P=1.27×10−131) association between
rs2549794 at a Crohn’s disease locus (Franke et al., 2010) and expression of
ILMN_1743145, which maps to the LRAP/ERAP2 gene (Fig. 5A). Other associations
measurable only in the blood datasets include rs2304130 and ILMN_2134224, and
rs6120849 and ILMN_2402805. These SNPs were nominated as associated with
measurements of total cholesterol and protein C respectively in plasma (Tang et al., 2010;
Waterworth et al., 2010).

We also found a series of significant associations in brain and not blood. Several of these
associations were probes on chromosome 12 associated with rs11171739 or rs1701704, two
SNPs nominated for Type-I diabetes. Additional associations included a series of SNPs on
chromosome 17. Previous studies have noted an effect of chromosome17 SNPs on
expression of the MAPT gene that is associated with risk of PD and PSP (2011; Hoglinger et
al., 2011). We therefore examined expression of ILM_1710903, which maps within the
coding sequence of MAPT, with association of SNPs across Chr17 and saw robust signals in
both the frontal cortex and cerebellum (Fig. 5B). This effect was driven by the H1/H2
haplotype across the MAPT locus as conditioning the analysis on a proxy SNP decreased the
apparent eQTL signal.
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Collectively, these results show that while some eQTLs are shared across tissues, there are
examples where restricted expression levels in one tissue limit the ability to detect
significant associations.

Overall ability to detect eQTLs depends on tissue type and gene expression
We next compared the proportions of eQTLs found in the three sample series and
considered whether these were associated with brain, blood or other phenotypes (Table 1).
In the analysis restricted to probes detected in both blood and brain tissues, 125 eQTLs were
found within 500 KB of any GWA SNP in blood, versus 40 eQTLs found in the brain
dataset. Of these, 21 significant eQTLs were found in the blood dataset for blood traits,
while 16 eQTLs were found in blood for brain traits. Six significant eQTLs were found in
brain, counting either cerebellum or frontal cortex, for brain traits and an additional six
eQTLs were found in brain for blood traits out of 40 total significant associations. The
proportions of blood and brain traits with detected eQTLs were similar in blood and brain
samples (two tailed Z-test, P=0.18, 1.0 respectively).

We performed independent analyses of probes that were only detected in one tissue as more
probes were tested in brain (1877 in frontal cortex and 1853 in cerebellum) than in blood
(413). There were 107 significant associations in cerebellum and 90 in frontal cortex
compared to 21 in blood but we did not find over-representation of traits annotated as brain
related in the brain datasets (Table 2).

Discussion
We have performed an eQTL analysis using SNPs from the NHGRI catalog of GWAS in
two tissue types, blood and brain (frontal cortex and cerebellum). The nominated SNPs are
associated with a variety of human traits, including diseases, physiological markers such as
blood cell numbers and continuous traits such as height. We specifically addressed whether
it is necessary to examine brain tissue to detect eQTLs for brain phenotypes or whether the
same information could be obtained from blood. We find that while many eQTLs are shared
between blood and brain tissues, there are specific instances, not always simply related to
gene expression levels, where the detection of eQTLs is limited by the tissue studied.

A small number of eQTLs are detectable in all three datasets tested. A proportion of these
common eQTLs demonstrated strong effects sizes, such as SNPs associated with Type 1
diabetes on chromosome 12 (Barrett et al., 2009; Burton et al., 2007; Cooper et al., 2008;
Hakonarson et al., 2008; Todd et al., 2007b) or associated with smoking behavior on
chromosome 19 (Furberg H, 2010). We have therefore demonstrated that coincident eQTLs
exist between blood and brain tissues and therefore discrete eQTLs are found in more than
one human primary tissue as previously suggested (Bullaughey K, 2009; Ding et al., 2010;
Greenawalt et al., 2011).

There were eQTLs that could be detected only in one tissue type and in some cases these are
due to differences in gene expression. This is true for genes such as MAPT, which encodes
for the tau protein that is expressed largely in post-mitotic neurons. Therefore, there will be
cases where, when interrogating GWAS data it will be important to examine the target tissue
of interest, thus affirming the need to look at brain for studies related to neurological or
psychiatric phenotypes.

Of greater interest is that we also found a subset of eQTLs that appear to be tissue specific,
despite the probes being reliably detected in all samples series. It is possible that genetic
variants can affect expression levels exclusively in a subset of tissues. For example, gene
expression may be altered in a tissue- and timing-specific manner by cis- regulatory
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elements (Cooper et al., 2008). In this case, although multiple tissues may be permissive for
expression, different −cis regulatory elements are being employed in each tissue and lead to
quantitatively different expression levels. Understanding why there are examples where
differences in expression do not explain eQTL detection in a simple way will be an
important question for future studies.

One caveat to these studies is that direct comparison of datasets derived from separate tissue
types with differential ascertainment methods is difficult. Specifically, the brain samples
were taken from deceased subjects whereas blood samples were drawn in life. However,
post mortem interval has been shown not to be a major confound within brain expression
data (Gibbs et al., 2010; Trabzuni et al., 2011) and we corrected for this and other known
methodological variables in the statistical model. However, because the samples used here
were from different individuals, we cannot exclude that we are detecting rare alleles and/or
genetic variants on a background of common SNPs. As demonstrated by power analysis, the
current dataset is not powered to directly detect rare alleles but has good power to detect
relatively large eQTL effect sizes. Therefore, this analysis performs best for loci that are
tagged by common variants and where the effect of the minor allele on expression is
relatively large. It is also important to note that in the present study, we limited our analysis
to transcripts within a relatively narrow (0.5MB) window around each SNP. This is larger
than the average distance between SNP and associated transcript of 121Kb (Gibbs et al.,
2010) but may inadvertently omit true eQTLs at larger distances while maintaining power.
Larger series would be needed to expand the analyses to more distal effects.

Further dissection of such loci will likely require deep sequencing of the genome for many
individuals and additional large-scale studies. One general limitation of hybridization based
arrays is that detection of low expression genes is difficult, which may be overcome by
RNA sequencing in the future. In addition to both of these technological developments,
eQTL surveys such as the one presented here will need to be repeated as the numbers of
SNPs nominated by GWAS studies increases. This is perhaps particularly true for brain
related phenotypes. Although we did not find that there were significantly more eQTLs for
brain phenotypes using brain expression data, the number of replicated GWAS ‘hits’ for
neurological and psychiatric conditions is still quite small and we might expect brain to be
more sensitive as the number of replicated loci increases. We have not tested all possible
SNPs in the current analysis to maintain power to detect significant associations, but such
analyses could be performed on an ad hoc basis for nominated SNPs in future GWAS
without the loss of power caused by testing the whole genome.

Overall, we demonstrate a number of clear and key examples where brain tissue is required
for eQTL discovery. We conclude that functional studies in one tissue have the capacity to
inform our understanding of regulatory variation in general, but that there are sufficient
numbers of counter-examples to suggest that for neurological and psychiatric traits we
should continue to examine gene expression in the brain.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

We integrate GWAS SNPs and examine the genetic control of gene expression in blood
and brain tissue.

• Many eQTLs associated with human traits are shared between blood and brain.

• A number of discrete, tissue specific eQTLs also exist in blood or brain.

• Functional studies in blood have a limited capacity to inform on regulatory
variation in the brain.

• Design of eQTL mapping experiments should consider the tissue of interest for
the phenotype studied.
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Figure 1. Power to detect eQTLs in brain and blood
Post hoc power calculations were performed for sample sizes that we achieved after quality
control in brain (A; 399 samples) or in blood (B; 501 samples). We estimated power (y axis)
at a range of minor allele frequencies (x axis) for each sample series. Each colored line
represents a different normalized effect size (Z) varying from 0.1 to 2.0 standard deviations
of difference for each minor allele in an additive model. The steeper power curves for the
blood series (B) indicate improved power over brain (A) to detect the same effect size, given
the lower number of samples in the former series.
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Figure 2. Comparative gene expression in blood and in brain
(A–C) Normalized gene expression values for each probe on the microarrays were converted
to mean values across the population and ranked such that 1.0 is the highest expressed gene.
Where genes were detected in <95% of samples in the population, we set the percentile to 0.
We plotted these to compare expression in blood versus frontal cortex (A) or cerebellum
(B), or to compare frontal cortex and cerebellum (C). Each probe is color coded by the
difference in rank between the pairs of tissue. (D–F) Similar plot but for percentile rank of
the variance in expression across the population of samples for blood versus frontal cortex
(D) or cerebellum (E), or frontal cortex and cerebellum (F).
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Figure 3. Similar and distinct SNP:probe associations in brain and blood
Each point shows comparisons of −log[10] of FDR corrected p-values for identical SNP and
probe combinations across all 3 tissues investigated, comparing blood with frontal cortex
(A) or cerebellum (B) and frontal cortex to cerebellum (C). Size of points is scaled to the
combined FDR corrected p-values after −log[10] transformation. Points are colored by the
associated phenotypes, where brain traits are shown in orange, blood traits in green and
others in blue.
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Figure 4. Blood and brain specific eQTLS in probes that are detected in all tissues
(A) Similar locus plot for ILMN_167893, which maps to ADCY3 and reveals a highly
significant signal in the brain samples but no significant p values in blood, despite adequate
detection of the probe in all tissues. (B) Plot of SNPs along the Chr17 region that includes
the GSDML and ORMDL3 genes showing −log[10]P values for association of each SNP
with expression of Illumina probe ILMN_1666206, which maps to the GSDML gene.
Despite having significant detection in all three tissues, there was a strong signal for blood
(red) but not in either of cerebellum (blue) or frontal cortex (green).
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Figure 5. eQTLs in probes detected only in brain or blood
(A) SNPs along the region of Chr5 that contains the LRAP gene showing −log[10]P values
for association of each SNP with expression of Illumina probe ILMN_1743143. (B) Plot of
SNPs along the Chr17 region that includes the MAPT gene for ILMN_ 1710903 in frontal
cortex (upper panel) or cerebellum (lower panel). For each tissue, we repeated the original
eQTL analysis (green) but made the analysis conditional on a proxy SNP for the H1/H2
inversion haplotype (orange). The decrease in P values after conditioning on a proxy SNP
suggests that most of the signal arises from the H1/H2 haplotype.
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Table 1

Counts of SNPs and SNP:probe pairs tested and significant associations per tissue and trait for probes that
were detected in all tissues

Counts of all SNPs and probes used and their annotations as blood vs brain

All GWAS Blood Brain Other

SNPs 783 176 (22.5%) 61 (7.8%) 546 (69.7%)

SNP:probe pairs 2929 683 (23.3%) 227 (7.6%) 2019 (68.9%)

Count (% of all) of significant associations within 500kb of SNP

Blood 125 21 (16.8%) 16 (12.8%) 88 (70.4%)

Cerebellum 33 5 (15.15%) 5 (15.15%) 23 (69.7%)

Frontal Cortex 21 3 (14.3%) 2 (9.5%) 16 (76.2%)
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