6 research outputs found

    Electronic Energy Transport in c-Si Irradiated with X-ray Beam Under Grazing Incidence Angles

    No full text
    The rapid development of a new generation of X-ray radiation sources providing ultrashort (from atto- to femtoseconds) pulses creates unique possibilities for generating high energy density states of matter. Instruments, like free-electron lasers (FELs) produce pulses of very high intensity and allow to extend the optical studies of radiation induced phase transitions of solids. The excitation of solid materials with x-ray femtosecond pulses offers a number of advantages over irradiation with femtosecond optical lasers. First of all the energy deposition process is not influenced by optical nonlinearities i.e. multiphoton absorption and free carrier absorption. Moreover the absorption depth can be varied over many orders of magnitude. E.g. for silicon it changes from a few nanometres up to hundreds of microns. Therefore, ultrashort X-ray pulses allow the preparation of well-defined excitation conditions in variable sample volumes and thus to study the energy transport processes. Single shot irradiations of the Si flat mirror were performed at SACLA FEL facilities in the range of 5.5 – 12 keV photon energies, at normal and grazing incidence angles. Observed radiation induced structural modification of materials is related to melting of silicon and its resolidification and a have threshold nature. The experimental damage thresholds are the highest in case of the irradiations below the critical angles. In these cases the energy density of the radiation absorbed at the sample’s surface can reach above a melting threshold (approx. 1eV/atom) without any structural modification. This may be explained by the transport of the energy out of the excitation volume (limited to the absorption skin depth) by hot electrons on the time scales shorter than the one typical for the electron-phonon coupling (~2 ps for Si). Modelling of the energy transport by ballistic electrons has been performed by means of the PENELOPE simulation code

    A comparative review of soil charcoal data: Spatiotemporal patterns of origin and long-term dynamics of Western European nutrient-poor grasslands

    No full text
    International audienceThe nutrient-poor grasslands of Western Europe are of major conservation concern because land use changes threaten their high biodiversity. Studies assessing their characteristics show that their past and ongoing dynamics are strongly related to human activities. Yet, the initial development patterns of this specific ecosystem remain unclear. Here, we examine findings from previous paleoecological investigations performed at local level on European grassland areas ranging from several hundred square meters to several square kilometers. Comparing data from these locally relevant studies at a regional scale, we investigate these grasslands' spatiotemporal patterns of origin and long-term dynamics. The study is based on taxonomic identification and radiocarbon AMS dating of charcoal pieces from soil/soil sediment archives of nutrient-poor grasslands in Mediterranean and temperate Western Europe (La Crau plain, Mont Lozère, Grands Causses, Vosges Mountains, Franconian Alb, and Upper-Normandy region). We address the following questions: (1) What are the key determinants of the establishment of these nutrient-poor grasslands? (2) What temporal synchronicities might there be? and (3) What is the spatial scale of these grasslands' past dynamics? The nutrient-poor grasslands in temperate Western Europe are found to result from the first anthropogenic woodland clearings during the late Neolithic, revealed by fire events in mesophilious mature forests. In contrast, the sites with Mediterranean affinities appear to have developed at earlier plant successional stages (pine forest, matorral), established before the first human impacts in the same period. However, no general pattern of establishment and dynamics of the nutrient-poor grasslands could be identified. Local mechanisms appear to be the key determinants of the dynamics of these ecosystems. Nevertheless, this paleoecological synthesis provides insights into past climate or human impacts on present-day vegetation

    Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review

    No full text

    Contributions of Quaternary botany to modern ecology and biogeography

    No full text
    corecore