2,523 research outputs found
Long range transport of ultra cold atoms in a far-detuned 1D optical lattice
We present a novel method to transport ultra cold atoms in a focused optical
lattice over macroscopic distances of many Rayleigh ranges. With this method
ultra cold atoms were transported over 5 cm in 250 ms without significant atom
loss or heating. By translating the interference pattern together with the beam
geometry the trap parameters are maintained over the full transport range.
Thus, the presented method is well suited for tightly focused optical lattices
that have sufficient trap depth only close to the focus. Tight focusing is
usually required for far-detuned optical traps or traps that require high laser
intensity for other reasons. The transport time is short and thus compatible
with the operation of an optical lattice clock in which atoms are probed in a
well designed environment spatially separated from the preparation and
detection region.Comment: 14 pages, 6 figure
The Determinants Of Human Wellbeing In Professional Activities
The article discusses the issue of person's attitude towards success in his professional activities, which are the value of human labor and his wellbeing in professioanl activity. Personal attitude and substantial components of socio-psychological factors of attitude development provides the field of welfare of the employee. It focuses on the implementation of efficient technologies of formation attitude towards success in the process of training and retraining. The object of the research was the OJSC Evrazruda candidate pool members studying at the Evraz Siberia Regional Staff Training Center, as well as a group of experts (engineer, metallurgists). The techniques of V. K. Gerbachevsky, V. V. Stolin, S. R. Panteleyev, H. J. Eysenck, M. Rokeach, N. M. Peysakhov and J. Rotter were used in the research. The study showed the interconnection of a person's attitude with the dominant features of the component structure of motivational, volitional and self-consciousness factors. They are the determinants of wellbeing and quality of life in professional activity
Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signalling and adaptation
Bacterial chemotaxis is controlled by the conformational changes of the
receptors, in response to the change of the ambient chemical concentration. In
a statistical mechanical approach, the signalling due to the conformational
changes is a thermodynamic average quantity, dependent on the temperature and
the total energy of the system, including both ligand-receptor interaction and
receptor-receptor interaction. This physical theory suggests to biology a new
understanding of cooperation in ligand binding and receptor signalling
problems. How much experimental support of this approach can be obtained from
the currently available data? What are the parameter values? What is the
practical information for experiments? Here we make comparisons between the
theory and recent experimental results. Although currently comparisons can only
be semi-quantitative or qualitative, consistency is clearly shown. The theory
also helps to sort a variety of data.Comment: 26 pages, revtex. Journal version. Analysis on another set of data on
adaptation time is adde
Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.
Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors
The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems
The use of ultra-precise optical clocks in space ("master clocks") will allow
for a range of new applications in the fields of fundamental physics (tests of
Einstein's theory of General Relativity, time and frequency metrology by means
of the comparison of distant terrestrial clocks), geophysics (mapping of the
gravitational potential of Earth), and astronomy (providing local oscillators
for radio ranging and interferometry in space). Within the ELIPS-3 program of
ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an
optical lattice clock on the ISS towards the end of this decade, as a natural
follow-on to the ACES mission, improving its performance by at least one order
of magnitude. The payload is planned to include an optical lattice clock, as
well as a frequency comb, a microwave link, and an optical link for comparisons
of the ISS clock with ground clocks located in several countries and
continents. Undertaking a necessary step towards optical clocks in space, the
EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two
"engineering confidence", accurate transportable lattice optical clock
demonstrators having relative frequency instability below 1\times10^-15 at 1 s
integration time and relative inaccuracy below 5\times10^-17. This goal
performance is about 2 and 1 orders better in instability and inaccuracy,
respectively, than today's best transportable clocks. The devices will be based
on trapped neutral ytterbium and strontium atoms. One device will be a
breadboard. The two systems will be validated in laboratory environments and
their performance will be established by comparison with laboratory optical
clocks and primary frequency standards. In this paper we present the project
and the results achieved during the first year.Comment: Contribution to European Frequency and Time Forum 2012, Gothenburg,
Swede
Recommended from our members
What drives interaction strengths in complex food webs? A test with feeding rates of a generalist stream predator
Describing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive relationship with prey taxon densities that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Hydrazones and Thiosemicarbazones Targeting Protein-Protein-Interactions of SARS-CoV-2 Papain-like Protease
The papain-like protease (PLpro) of SARS-CoV-2 is essential for viral propagation and, additionally, dysregulation of the host innate immune system. Using a library of 40 potential metal-chelating compounds we performed an X-ray crystallographic screening against PLpro. As outcome we identified six compounds binding to the target protein. Here we describe the interaction of one hydrazone (H1) and five thiosemicarbazone (T1-T5) compounds with the two distinct natural substrate binding sites of PLpro for ubiquitin and ISG15. H1 binds to a polar groove at the S1 binding site by forming several hydrogen bonds with PLpro. T1-T5 bind into a deep pocket close to the polyubiquitin and ISG15 binding site S2. Their interactions are mainly mediated by multiple hydrogen bonds and further hydrophobic interactions. In particular compound H1 interferes with natural substrate binding by sterical hindrance and induces conformational changes in protein residues involved in substrate binding, while compounds T1-T5 could have a more indirect effect. Fluorescence based enzyme activity assay and complementary thermal stability analysis reveal only weak inhibition properties in the high micromolar range thereby indicating the need for compound optimization. Nevertheless, the unique binding properties involving strong hydrogen bonding and the various options for structural optimization make the compounds ideal lead structures. In combination with the inexpensive and undemanding synthesis, the reported hydrazone and thiosemicarbazones represent an attractive scaffold for further structure-based development of novel PLpro inhibitors by interrupting protein-protein interactions at the S1 and S2 site
Coarse-Graining Protein Structures With Local Multivariate Features from Molecular Dynamics
A multivariate statistical theory, local feature analysis (LFA), extracts functionally relevant domains from molecular dynamics (MD) trajectories. The LFA representations, like those of principal component analysis (PCA), are low dimensional and provide a reduced basis set for collective motions of simulated proteins, but the local features are sparsely distributed and spatially localized, in contrast to global PCA modes. One key problem in the assignment of local features is the coarse-graining of redundant LFA output functions by means of seed atoms. One can solve the combinatorial problem by adding seed atoms one after another to a growing set, minimizing a reconstruction error at each addition. This allows for an efficient implementation, but the sequential algorithm does not guarantee the optimal mutual correlation of the sequentially assigned features. Here, we present a novel coarse-graining algorithm for proteins that directly minimizes the mutual correlation of seed atoms by Monte Carlo (MC) simulations. Tests on MD trajectories of two biological systems, bacteriophage T4 lysozyme and myosin II motor domain S1, demonstrate that the new algorithm provides statistically reproducible results and describes functionally relevant dynamics. The well-known undersampling of large-scale motion by short MD simulations is apparent also in our model, but the new coarse-graining offers a major advantage over PCA; converged features are invariant across multiple windows of the trajectory, dividing the protein into converged regions and a smaller number of localized, undersampled regions. In addition to its use in structure classification, the proposed coarse-graining thus provides a localized measure of MD sampling efficiency
- …