41 research outputs found

    Erratum to: Analysis of in vitro ADCC and clinical response to trastuzumab: possible relevance of Fc\u3b3RIIIA/Fc\u3b3RIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines

    Get PDF
    BACKGROUND: Trastuzumab is a humanized monoclonal antibody (mAb) currently used for the treatment of breast cancer (BC) patients with HER-2 overexpressing tumor subtype. Previous data reported the involvement of FcγRIIIA/IIA gene polymorphisms and/or antibody-dependent cellular cytotoxicity (ADCC) in the therapeutic efficacy of trastuzumab, although results on these issues are still controversial. This study was aimed to evaluate in vitro the functional relationships among FcγRIIIA/IIA polymorphisms, ADCC intensity and HER-2 expression on tumor target cells and to correlate them with response to trastuzumab. PATIENTS AND METHODS: Twenty-five patients with HER-2 overexpressing BC, receiving trastuzumab in a neoadjuvant (NEO) or metastatic (MTS) setting, were genotyped for the FcγRIIIA 158V>F and FcγRIIA 131H>R polymorphisms by a newly developed pyrosequencing assay and by multiplex Tetra-primer-ARMS PCR, respectively. Trastuzumab-mediated ADCC of patients’ peripheral blood mononuclear cells (PBMCs) was evaluated prior to therapy and measured by (51)Chromium release using as targets three human BC cell lines showing different levels of reactivity with trastuzumab. RESULTS: We found that the FcγRIIIA 158F and/or the FcγRIIA 131R variants, commonly reported as unfavorable in BC, may actually behave as ADCC favorable genotypes, in both the NEO (P ranging from 0.009 to 0.039 and from 0.007 to 0.047, respectively) and MTS (P ranging from 0.009 to 0.032 and P = 0.034, respectively) patients. The ADCC intensity was affected by different levels of trastuzumab reactivity with BC target cells. In this context, the MCF-7 cell line, showing the lowest reactivity with trastuzumab, resulted the most suitable cell line for evaluating ADCC and response to trastuzumab. Indeed, we found a statistically significant correlation between an increased frequency of patients showing ADCC of MCF-7 and complete response to trastuzumab in the NEO setting (P = 0.006). CONCLUSIONS: Although this study was performed in a limited number of patients, it would indicate a correlation of FcγR gene polymorphisms to the ADCC extent in combination with the HER-2 expression levels on tumor target cells in BC patients. However, to confirm our findings further experimental evidences obtained from a larger cohort of BC patients are mandatory. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0680-0) contains supplementary material, which is available to authorized users

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection

    Thermodynamics of Mixtures Containing Amines. XV. Liquid–Liquid Equilibria for Benzylamine + CH3(CH2)nCH3 (n = 8, 9, 10, 12, 14)

    Get PDF
    Coexistence curves for the liquid−liquid equilibria (LLE) of 1-phenylmethanamine (benzylamine) + CH3(CH2)nCH3 (n = 8, 9, 10, 12, 14) have been determined using the critical opalescence method by means of a laser scattering technique. All of the LLE curves show an upper critical solution temperature (UCST), which increases with increasing n. For systems including a given n-alkane, the UCST decreases in the sequence aniline > 2-methylaniline (o-toluidine) > benzylamine > N-methylaniline > pyridine. This means that amine−amine interactions become weaker in the same order. Most of the DISQUAC interaction parameters for the aliphatic/amine (a,n) and aromatic/ amine (b,n) contacts previously determined for solutions with aniline, o-toluidine, or N-methylaniline have been used for the representation of the LLE data. Only the first dispersive interaction parameter of the (a,n) contact has been modified. The coordinates of the critical points are correctly represented by the model

    Development and Validation of a Risk Score for Chronic Kidney Disease in HIV Infection Using Prospective Cohort Data from the D:A:D Study

    Get PDF
    Ristola M. on työryhmien DAD Study Grp ; Royal Free Hosp Clin Cohort ; INSIGHT Study Grp ; SMART Study Grp ; ESPRIT Study Grp jäsen.Background Chronic kidney disease (CKD) is a major health issue for HIV-positive individuals, associated with increased morbidity and mortality. Development and implementation of a risk score model for CKD would allow comparison of the risks and benefits of adding potentially nephrotoxic antiretrovirals to a treatment regimen and would identify those at greatest risk of CKD. The aims of this study were to develop a simple, externally validated, and widely applicable long-term risk score model for CKD in HIV-positive individuals that can guide decision making in clinical practice. Methods and Findings A total of 17,954 HIV-positive individuals from the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study with >= 3 estimated glomerular filtration rate (eGFR) values after 1 January 2004 were included. Baseline was defined as the first eGFR > 60 ml/min/1.73 m2 after 1 January 2004; individuals with exposure to tenofovir, atazanavir, atazanavir/ritonavir, lopinavir/ritonavir, other boosted protease inhibitors before baseline were excluded. CKD was defined as confirmed (>3 mo apart) eGFR In the D:A:D study, 641 individuals developed CKD during 103,185 person-years of follow-up (PYFU; incidence 6.2/1,000 PYFU, 95% CI 5.7-6.7; median follow-up 6.1 y, range 0.3-9.1 y). Older age, intravenous drug use, hepatitis C coinfection, lower baseline eGFR, female gender, lower CD4 count nadir, hypertension, diabetes, and cardiovascular disease (CVD) predicted CKD. The adjusted incidence rate ratios of these nine categorical variables were scaled and summed to create the risk score. The median risk score at baseline was -2 (interquartile range -4 to 2). There was a 1: 393 chance of developing CKD in the next 5 y in the low risk group (risk score = 5, 505 events), respectively. Number needed to harm (NNTH) at 5 y when starting unboosted atazanavir or lopinavir/ritonavir among those with a low risk score was 1,702 (95% CI 1,166-3,367); NNTH was 202 (95% CI 159-278) and 21 (95% CI 19-23), respectively, for those with a medium and high risk score. NNTH was 739 (95% CI 506-1462), 88 (95% CI 69-121), and 9 (95% CI 8-10) for those with a low, medium, and high risk score, respectively, starting tenofovir, atazanavir/ritonavir, or another boosted protease inhibitor. The Royal Free Hospital Clinic Cohort included 2,548 individuals, of whom 94 individuals developed CKD (3.7%) during 18,376 PYFU (median follow-up 7.4 y, range 0.3-12.7 y). Of 2,013 individuals included from the SMART/ESPRIT control arms, 32 individuals developed CKD (1.6%) during 8,452 PYFU (median follow-up 4.1 y, range 0.6-8.1 y). External validation showed that the risk score predicted well in these cohorts. Limitations of this study included limited data on race and no information on proteinuria. Conclusions Both traditional and HIV-related risk factors were predictive of CKD. These factors were used to develop a risk score for CKD in HIV infection, externally validated, that has direct clinical relevance for patients and clinicians to weigh the benefits of certain antiretrovirals against the risk of CKD and to identify those at greatest risk of CKD.Peer reviewe

    Efficient Neuromorphic Algorithms for Gamma-Ray Spectrum Denoising and Radionuclide Identification

    Get PDF
    Radionuclide detection and identification are important tasks for deterring a potentially catastrophic nuclear event. Due to high levels of background radiation from both terrestrial and extraterrestrial sources, some form of noise reduction pre-processing is required for a gamma-ray spectrum prior to being analyzed by an identification algorithm so as to determine the identity of anomalous sources. This research focuses on the use of neuromorphic algorithms for the purpose of developing low power, accurate radionuclide identification devices that can filter out non-anomalous background radiation and other artifacts created by gamma-ray detector measurement equipment, along with identifying clandestine, radioactive material. A sparse coding optimization solver, the Simple Spiking Locally Competitive Algorithm, is investigated and simulated for the tasks of radionuclide detection and identification. A convolutional neural network is used to filter the input signal to the identification algorithm to remove background radiation and detector noise. Both algorithms are designed to be neuromorphic, implemented in hardware using memristive devices, thus significantly reducing their necessary power consumption compared to software implementations. The radionuclide identification algorithm is compared to Gamma Detector Response and Analysis Software, an industry standard package that is developed by Sandia National Laboratories. Our neuromorphic algorithm achieves a 91\% accuracy with a high resolution detector and an 89% accuracy with a low resolution detector on the corresponding measured gamma-ray spectra test sets, both less than 2% below the benchmark, state of the art algorithm\u27s performance on the same spectra. To determine the efficacy of using a neural network for background and noise reduction, identification results are compared between gamma-ray spectra with no noise reduction, the traditional standard of background subtraction, and using the presented convolutional neural network for denoising. Finally, the power consumption of the proposed neuromorphic algorithms is estimated and compared to the empirically determined power consumption of the Gamma Detector Response and Analysis Software, showing that they can achieve the same task with over a 99% reduction in power

    Application of a Simple, Spiking, Locally Competitive Algorithm to Radionuclide Identification

    No full text
    Many radionuclide identification algorithms use statistical inference to collect a variety of features from gamma-ray spectra to deduce the presence of particular radionuclides. More modern algorithms require large amounts of data to learn and use latent features from spectra for classification. Both approaches are computationally expensive, which is reflected in their power consumption, and require large amounts of user intervention to prepare. In this paper we introduce a low power, neuromorphic algorithm for the real-time identification of radionuclides which simultaneously considers the entire shape of a gamma-ray spectrum. Utilizing the output of a traditional gamma-ray detector, our spiking, locally competitive algorithm uses sparse coding optimization to compare global patterns in a gamma-ray spectrum with a dictionary of radionuclide templates. This approach allows us to model informative global features resulting from both photoelectric absorption and Compton scattering. For the purpose of radiation threat reduction, the dictionary consists of data from the Nuclear Wallet Cards, a list of radionuclides and their properties compiled by the National Nuclear Data Center. To test our algorithm we use a variety of gamma-ray spectra created using radionuclides measured under laboratory conditions with varying durations, distances, activity levels, and backgrounds, resulting in a wide range of signal to noise ratios. We have created test sets for three different gamma-ray detector types, with 57Co, 137Cs, 152Eu, 60Co, 239Pu, and 235U sources, to quantify the effect of resolution, efficiency, and background on the accuracy of the algorithm. We demonstrate a true positive accuracy of 91% with a high resolution detector and 89% with a low resolution detector on the corresponding test sets. Experimenting with the same radionuclides included in the test sets in a variety of special nuclear material (SNM) masking configurations, we show that our algorithm is capable of correctly identify both SNM and mask even when the activity level of the mask is several times higher than that of the SNM. We also determine that our algorithm achieves over a 99% reduction in power consumption over other radionuclide identification software applications, which is critical for long term, independent monitoring and is the goal of this research
    corecore