1,094 research outputs found

    Tumor Cell Metabolism: Cancer's Achilles' Heel

    Get PDF
    The essential hallmarks of cancer are intertwined with an altered cancer cell-intrinsic metabolism, either as a consequence or as a cause. As an example, the resistance of cancer mitochondria against apoptosis-associated permeabilization and the altered contribution of these organelles to metabolism are closely related. Similarly, the constitutive activation of signaling cascades that stimulate cell growth has a profound impact on anabolic metabolism. Here, we review the peculiarities of tumor cell metabolism that might be taken advantage of for cancer treatment. Specifically, we discuss the alterations in signal transduction pathways and/or enzymatic machineries that account for metabolic reprogramming of transformed cells

    Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas

    Get PDF
    Background: Glioblastomas (GBM) present a high cellular heterogeneity with conspicuous necrotic regions associated with hypoxia, which is related to tumor aggressiveness. GBM tumors exhibit high glycolytic metabolism with increased lactate production that is extruded to the tumor microenvironment through monocarboxylate transporters (MCTs). While hypoxia-mediated regulation of MCT4 has been characterized, the role of MCT1 is still controversial. Thus, we aimed to understand the role of hypoxia in the regulation of MCT expression and function in GBM, MCT1 in particular. Methods: Expression of hypoxia-and glycolytic-related markers, as well as MCT1 and MCT4 isoforms was assessed in in vitro and in vivo orthotopic glioma models, and also in human GBM tissues by immunofluorescence/immunohistochemistry and Western blot. Following MCT1 inhibition, either pharmacologically with CHC (a-cyano-4-hydroxynnamic acid) or genetically with siRNAs, we assessed GBM cell viability, proliferation, metabolism, migration and invasion, under normoxia and hypoxia conditions. Results: Hypoxia induced an increase in MCT1 plasma membrane expression in glioma cells, both in in vitro and in vivo models. Additionally, treatment with CHC and downregulation of MCT1 in glioma cells decreased lactate production, cell proliferation and invasion under hypoxia. Moreover, in the in vivo orthotopic model and in human GBM tissues, there was extensive co-expression of MCT1, but not MCT4, with the GBM hypoxia marker CAIX. Conclusion: Hypoxia-induced MCT1 supports GBM glycolytic phenotype, being responsible for lactate efflux and an important mediator of cell survival and aggressiveness. Therefore, MCT1 constitutes a promising therapeutic target in GBM.This study was supported by Projecto Estratégico- LA 26 – 2013-2014 (PEst-C/SAL/LA0026/2013) and ON.2 SR&TD Integrated Program (NORTE-07-0124FEDER-000017)” co-funded by Programa Operacional Regional do Norte (ON.2- O Novo Norte), Quadro de Referência Estratégico Nacional (QREN), through Fundo Europeu de Desenvolvimento Regional (FEDER), as well as MCTI/CNPq Nº 73/2013 (Brazil). VMG received a fellowship from Fundação para a Ciência e Tecnologia (FCT) ref. SFRH/BD/51997/2012.info:eu-repo/semantics/publishedVersio

    Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors

    Get PDF
    Adrenocortical carcinomas (ACCs) are complex neoplasias that may present unexpected clinical behavior, being imperative to identify new biological markers that can predict patient prognosis and provide new therapeutic options. The main aim of the present study was to evaluate the prognostic value of metabolism-related key proteins in adrenocortical carcinoma. The immunohistochemical expression of MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX was evaluated in a series of 154 adult patients with adrenocortical neoplasia and associated with patients’ clinicopathological parameters. A significant increase in was found for membranous expression of MCT4, GLUT1 and CAIX in carcinomas, when compared to adenomas. Importantly MCT1, GLUT1 and CAIX expressions were significantly associated with poor prognostic variables, including high nuclear grade, high mitotic index, advanced tumor staging, presence of metastasis, as well as shorter overall and disease free survival. In opposition, MCT2 membranous expression was associated with favorable prognostic parameters. Importantly, cytoplasmic expression of CD147 was identified as an independent predictor of longer overall survival and cytoplasmic expression of CAIX as an independent predictor of longer disease-free survival. We provide evidence for a metabolic reprogramming in adrenocortical malignant tumors towards the hyperglycolytic and acid-resistant phenotype, which was associated with poor prognosis.This work was supported by FAPESP to Maria Claudia Nogueira Zerbini (2013-26344-8). SG received the post-doctoral fellowship UMINHO/BPD/18/2014.info:eu-repo/semantics/publishedVersio

    The clinicopathological significance of monocarboxylate transporters in testicular germ cell tumors

    Get PDF
    Metabolic reprogramming is one of the hallmarks of cancer. The hyperglycolytic phenotype is often associated with the overexpression of metabolism-associated proteins, such as monocarboxylate transporters (MCTs). MCTs are little explored in germ cell tumors (GCTs), thus, the opportunity to understand the relevance of these metabolic markers and their chaperone CD147 in this type of tumor arises. The main aim of this study was to evaluate the expression of MCT1, MCT2, MCT4 and CD147 in testicular GCT samples and the clinicopathological significance of these metabolism related proteins.CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil (480119/2013-9 and 306195/2016-0)info:eu-repo/semantics/publishedVersio

    EphrinA1 inactivates integrin-mediated vascular smooth muscle cell spreading via the Rac/PAK pathway.

    Full text link
    peer reviewedInteractions between the Eph receptor tyrosine kinase and ephrin ligands transduce short-range signals regulating axon pathfinding, development of the cardiovascular system, as well as migration and spreading of neuronal and non-neuronal cells. Some of these effects are believed to be mediated by alterations in actin dynamics. The members of the small Rho GTPase family elicit various effects on actin structures and are probably involved in Eph receptor-induced actin modulation. EphrinA1 is proposed to contribute to angiogenesis as it is strongly expressed at sites of neovascularization. Moreover, angiogenic factors induce the expression of ephrinA1 in endothelial cells. In this study, using rat vascular smooth muscle cells (VSMCs), we investigated the contribution of the small Rho GTPases in ephrinA1-induced integrin inactivation. EphrinA1 did not significantly affect early adhesion of VSMCs on purified laminin or fibronectin, but strongly impaired cell spreading. The Rho kinase inhibitor Y-27632 partly reversed the ephrinA1 effect, suggesting involvement of Rho in this model. However, inhibition of RhoA synthesis with short interfering (si)RNA had a modest effect, suggesting that RhoA plays a limited role in ephrinA1-mediated inhibition of spreading in VSMCs. The ephrinA1-mediated morphological alterations correlated with inhibition of Rac1 and p21-activated kinase 1 (PAK1) activity, and were antagonized by the expression of a constitutively active Rac mutant. Moreover, repression of Rac1 synthesis with siRNA amplifies the ephrinA1-induced inhibition of spreading. Finally, sphingosine-1-phosphate (S1P), a lipid mediator known to inhibit Rac activation in VSMCs amplifies the ephrinA1 effect. In conclusion, our results emphasize the role of the Rac/PAK pathway in ephrinA1-mediated inhibition of spreading. In this way, ephrinA1, alone or in synergy with S1P, can participate in blood vessel destabilization, a prerequisite for angiogenesis

    EphrinA1 inactivates integrin-mediated vascular smooth muscle cell spreading via the Rac/PAK pathway.

    Full text link
    peer reviewedInteractions between the Eph receptor tyrosine kinase and ephrin ligands transduce short-range signals regulating axon pathfinding, development of the cardiovascular system, as well as migration and spreading of neuronal and non-neuronal cells. Some of these effects are believed to be mediated by alterations in actin dynamics. The members of the small Rho GTPase family elicit various effects on actin structures and are probably involved in Eph receptor-induced actin modulation. EphrinA1 is proposed to contribute to angiogenesis as it is strongly expressed at sites of neovascularization. Moreover, angiogenic factors induce the expression of ephrinA1 in endothelial cells. In this study, using rat vascular smooth muscle cells (VSMCs), we investigated the contribution of the small Rho GTPases in ephrinA1-induced integrin inactivation. EphrinA1 did not significantly affect early adhesion of VSMCs on purified laminin or fibronectin, but strongly impaired cell spreading. The Rho kinase inhibitor Y-27632 partly reversed the ephrinA1 effect, suggesting involvement of Rho in this model. However, inhibition of RhoA synthesis with short interfering (si)RNA had a modest effect, suggesting that RhoA plays a limited role in ephrinA1-mediated inhibition of spreading in VSMCs. The ephrinA1-mediated morphological alterations correlated with inhibition of Rac1 and p21-activated kinase 1 (PAK1) activity, and were antagonized by the expression of a constitutively active Rac mutant. Moreover, repression of Rac1 synthesis with siRNA amplifies the ephrinA1-induced inhibition of spreading. Finally, sphingosine-1-phosphate (S1P), a lipid mediator known to inhibit Rac activation in VSMCs amplifies the ephrinA1 effect. In conclusion, our results emphasize the role of the Rac/PAK pathway in ephrinA1-mediated inhibition of spreading. In this way, ephrinA1, alone or in synergy with S1P, can participate in blood vessel destabilization, a prerequisite for angiogenesis
    corecore