62 research outputs found

    The Spectral Energy Distribution of Fermi bright blazars

    Full text link
    (Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the \gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log ν\nu - Log ν\nu Fν_\nu representation, the typical broad-band spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SEDs to characterize the peak intensity of both the low and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broad-band colors (i.e. the radio to optical and optical to X-ray spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency νpS\nu_p^S is positioned between 1012.5^{12.5} and 1014.5^{14.5} Hz in broad-lined FSRQs and between 101310^{13} and 101710^{17} Hz in featureless BL Lacertae objects.We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron - inverse Compton scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton (SSC) models cannot explain most of our SEDs, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. (...)Comment: 85 pages, 38 figures, submitted to Ap

    EUD-MARS: End-User Development of Model-Driven Adaptive Robotics Software Systems

    Get PDF
    Empowering end-users to program robots is becoming more significant. Introducing software engineering principles into end-user programming could improve the quality of the developed software applications. For example, model-driven development improves technology independence and adaptive systems act upon changes in their context of use. However, end-users need to apply such principles in a non-daunting manner and without incurring a steep learning curve. This paper presents EUD-MARS that aims to provide end-users with a simple approach for developing model-driven adaptive robotics software. End-users include people like hobbyists and students who are not professional programmers but are interested in programming robots. EUD-MARS supports robots like hobby drones and educational humanoids that are available for end-users. It offers a tool for software developers and another one for end-users. We evaluated EUD-MARS from three perspectives. First, we used EUD-MARS to program different types of robots and assessed its visual programming language against existing design principles. Second, we asked software developers to use EUD-MARS to configure robots and obtained their feedback on strengths and points for improvement. Third, we observed how end-users explain and develop EUD-MARS programs, and obtained their feedback mainly on understandability, ease of programming, and desirability. These evaluations yielded positive indications of EUD-MARS

    Identification of a new European rabbit IgA with a serine-rich hinge region

    Get PDF
    <div><p>In mammals, the most striking IgA system belongs to Lagomorpha. Indeed, 14 IgA subclasses have been identified in European rabbits, 11 of which are expressed. In contrast, most other mammals have only one IgA, or in the case of hominoids, two IgA subclasses. Characteristic features of the mammalian IgA subclasses are the length and amino acid sequence of their hinge regions, which are often rich in Pro, Ser and Thr residues and may also carry Cys residues. Here, we describe a new IgA that was expressed in New Zealand White domestic rabbits of <i>IGHV</i>a1 allotype. This IgA has an extended hinge region containing an intriguing stretch of nine consecutive Ser residues and no Pro or Thr residues, a motif exclusive to this new rabbit IgA. Considering the amino acid properties, this hinge motif may present some advantage over the common IgA hinge by affording novel functional capabilities. We also sequenced for the first time the IgA14 CH2 and CH3 domains and showed that IgA14 and IgA3 are expressed.</p></div

    Synthesis, characterization and a reactivity study of some allyl palladium complexes bearing bidentate hemi-labile carbene or mixed carbene/PPh3 ligands

    Get PDF
    With the aim at synthesizing novel allyl complexes that can potentially act as catalysts in the Tsuji-Trost catalyzed reaction, we have synthesized and characterized some allyl and 2-Meallyl palladium derivatives with one hemilabile bidentate or two strong mono-coordinating spectator ligands. The hemilabile ligands are constituted by one nitrogen heterocyclic carbene (NHC) fragment acting as the pivot bearing a labile wing with a pyridine nitrogen or sulfur atom as the second stabilizing atom. One of two monodentate ligands is in all cases PPh3 whereas the other is a mono- or partially coordinated hemilabile carbene. The complexes were characterized by standard spectroscopic methods and elemental analysis and in two cases by SC-XRD technique.The reactivity of two selected complexes toward the Tsuji-Trost reaction was tested by stoichiometric allyl amination carried out with piperidine and the results of such a mechanistic investigation integrated by a computational study are also reported in this paper. (C) 2016 Elsevier Ltd. All rights reserved

    The spectral energy distribution of fermi bright blazars

    Get PDF
    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν Fν representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, αro, and optical to X-ray, αox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (νSpeak) is positioned between 1012.5 and 1014.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 1017 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between νSpeak and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars. © 2010 The American Astronomical Society

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Strengths-based resettlement

    No full text
    corecore