
Open Research Online
The Open University’s repository of research publications
and other research outputs

EUD-MARS: End-User Development of Model-Driven
Adaptive Robotics Software Systems
Journal Item
How to cite:

Akiki, Pierre; Akiki, Paul; Bandara, Arosha and Yu, Yijun (2020). EUD-MARS: End-User Development of
Model-Driven Adaptive Robotics Software Systems. Science of Computer Programming, 200, article no. 102534.

For guidance on citations see FAQs.

c© 2020 Elsevier

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.scico.2020.102534

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.1016/j.scico.2020.102534
http://oro.open.ac.uk/policies.html

 Science of Computer Programming 1
Authors’ Version

EUD-MARS: End-User Development of Model-Driven Adaptive Robotics
Software Systems

Pierre A. Akiki a*, Paul A. Akiki b, Arosha K. Bandara b, and Yijun Yu b

a Department of Computer Science, Notre Dame University–Louaize, Zouk Mosbeh, Lebanon

b School of Computing and Communications, The Open University, Milton Keynes, United Kingdom

ABSTRACT

Empowering end-users to program robots is becoming more significant. Introducing software engineering principles into end-user pro-
gramming could improve the quality of the developed software applications. For example, model-driven development improves tech-
nology independence and adaptive systems act upon changes in their context of use. However, end-users need to apply such principles
in a non-daunting manner and without incurring a steep learning curve. This paper presents EUD-MARS that aims to provide end-users
with a simple approach for developing model-driven adaptive robotics software. End-users include people like hobbyists and students
who are not professional programmers but are interested in programming robots. EUD-MARS supports robots like hobby drones and
educational humanoids that are available for end-users. It offers a tool for software developers and another one for end-users. We eval-
uated EUD-MARS from three perspectives. First, we used EUD-MARS to program different types of robots and assessed its visual pro-
gramming language against existing design principles. Second, we asked software developers to use EUD-MARS to configure robots
and obtained their feedback on strengths and points for improvement. Third, we observed how end-users explain and develop EUD-
MARS programs, and obtained their feedback mainly on understandability, ease of programming, and desirability. These evaluations
yielded positive indications of EUD-MARS.

KEYWORDS

End-user development, Model-driven, Adaptive, Robots, Visual languages, Visual development environments

 Introduction

The role of end-users in software development is becoming increasingly important. End-users are gaining access to a
wide variety of devices that they can program. Robots are gaining wider adoption and can operate as Internet-of-Things
(IoT) objects (things), because of their ability to sense their environment, perform computations, and exchange data over a
network. End-users have a primary role to play in controlling robots, whether for personal or professional use. For exam-
ple, drones are serving a variety of applications like aerial filming and entertainment [1]. End-users have already been
engaged in various types of programming activities in areas such as business automation [2], IoT [3], and spreadsheets
[4]. The adoption of software engineering principles in end-user software-development improves the quality of software
products [5]. Applying model-driven development makes software systems resilient to changes in technology and re-
quirements. Supporting adaptation allows the developed systems to act dynamically upon changes that occur in their con-
text of use (user, platform, and environment). However, in order for end-users to apply these principles, they require an
approach that is not daunting and does not incur a steep learning curve. This is the role of End-User Development of
Model-driven Adaptive Robotics Software (EUD-MARS), which is the approach that we present in this paper.

1.1. What is EUD-MARS?

 EUD-MARS is an approach that empowers end-users to apply model-driven principles to the development of adaptive
robotics software systems. This approach does not require end-users to have advanced technical skills that would incur a
steep learning curve.

Model-driven software-development approaches promote the use of multiple levels of abstraction, which enable an ab-
stract model to have multiple concrete implementations in different technologies. For example, an abstract model can rep-
resent a program that controls various robots. This model would map to several concrete models that are compatible with
different hardware technologies and application programming interfaces (APIs). This is possible as long as the target ro-

———————
* Corresponding author.

E-mail addresses: pakiki@ndu.edu.lb (Pierre A. Akiki), paul.akiki@open.ac.uk (Paul A. Akiki), arosha.bandara@open.ac.uk (A. K. Bandara),
yijun.yu@open.ac.uk (Y. Yu)

2020

2 P. A. Akiki et al. / Science of Computer Programming

bots support the same types of actions. For example, end-users can execute the same program on two drones that have
similar features, even if these drones are from different manufacturers. EUD-MARS hides the technicalities of model-
driven development from end-users in an underlying layer, which professional software developers can control. To avoid
possible confusion, we should note that the term model-driven in this paper refers to software models not hardware sys-
tem models. EUD-MARS targets software systems that end-users develop to control robots, but it does not target the de-
sign of robot hardware.

Adaptive systems alter their behavior based on changes in their context of use. The development of adaptive systems
can be a challenging task, even for professional software developers. EUD-MARS provides visual blocks that enable end-
users, who do not possess advanced technical skills, to incorporate adaptive behavior into their programs. End-users can
use events in their EUD-MARS programs to include change notifications, which trigger based on occurrences such as val-
ue changes. Robot sensors are the main detectors of changes. Events provide end-users access to the output of robot sen-
sors but can also notify of changes from other sources such as controllers (e.g., key pressed). After detecting changes with
events, end-users can adapt the behavior of one or more robots by invoking or restricting desired actions. The detection of
changes occurs in real-time. This enables robots to adapt to new situations related to context-of-use aspects (user, plat-
form, and environment). The following are few examples of such situations: a different type of user taking control (user),
malfunction in one of the robot’s parts (platform), low battery level on a robot (platform), and obstacles in a robot’s sur-
roundings (environment). For example, a robot could block some of its features from certain users based on their access
rights. A robot could hand its task over to another robot if one of its parts is malfunctioning or if its battery level is low.
When a robot faces an obstacle, such as an object or another robot, it could stop moving to avoid a collision.

EUD-MARS follows the approach shown in Fig. 1. (1) Professional software developers start the process by defining
robot profiles that embody EUD-MARS concepts. Software developers can define these profiles using either an XML-
based language or a visual tool that produces an output in this language. Robot profiles contain technical descriptions of
the robots that the end-users are expecting to program. These profiles serve as a foundation that enables end-users to
program robots without having to use complicated technical artifacts such as XML and code. (2) With EUD-MARS, end-
users program robots via a visual programming language that we created using Blockly [6]. (3) When an end-user exe-
cutes a visual program, a converter transforms this program into an XML-based representation. The same converter
transforms the visual programs that use different robot profiles to XML. (4) Then, an interpreter reads the XML-based
program (from the converter) and the XML-based representation of the robot profiles, and it dynamically (at runtime)
executes the program’s instructions on the robots.

Dividing the work between the converter and the interpreter creates a separation of concerns. The converter performs
a transformation between a program’s Blockly-based visual representation and the XML-based representation of EUD-
MARS that the interpreter interprets and executes. Since the converter and the interpreter work dynamically, EUD-MARS
can reflect program changes such as adaptation constraints on the fly without having to generate code that requires com-

Fig. 1. Overview of the proposed EUD-MARS approach.

 P. A. Akiki et al. / Science of Computer Programming 3

pilation. The interpreter uses robot APIs to execute actions on robots. Software developers can obtain an API from a ro-
bot’s manufacturer or develop it themselves. EUD-MARS programs can control multiple robots, which are working either
individually or collaboratively. We use the word “robot” in this paper to refer to a variety of robots such as wheeled ro-
bots (e.g., rovers), legged robots (e.g., humanoids), and flying robots (e.g., drones).

1.2. EUD-MARS example

The example EUD-MARS visual program in Fig. 2 shows a sequence of actions that can be executed on multiple robots
(Fig. 2a), and an adaptation of a robot’s behavior based on a change in its context of use (Fig. 2b).

The action sequence “MakeQuickMove” (Fig. 2a) calls the actions “move forward” and “stop” and a robot-independent
time delay utility function. The latter actions apply to different types of robots. Hence, it is possible to execute this action
sequence on similar robots developed using different hardware. These robots can be, for example, two rovers developed
with different robotics kits like Lego Mindstorms and VEX. It is also possible to execute this action sequence on different
robots that are partially similar. For example, both rovers and drones can move forward and stop. In this example, we can
see that the program is executing the same “MakeQuickMove” action sequence twice, once with a Lego Mindstorms
shooter robot and another time with a NAO [7] humanoid robot. We should emphasize that the action sequence depends
on the capabilities of the target robot(s). In this case, if a robot does not support moving forward and stopping, then it
would not be possible to execute the “MakeQuickMove” action sequence on it.

 The adaptation (Fig. 2b) in this example activates upon the detection of red color. The “When” event and its condition
represent this detection. When the robot “Lego Shooter Bot A” detects red color (through its color sensor), the program
stops this robot and then prevents it from moving forward. The “Prevent Execution” block performs the prevention. Un-
der this block, the end-user programmers specify the action that they wish to execute before prevention (if any), e.g., “stop”,
and the action that they wish to prevent from executing, e.g., “move forward”. One case for applying this particular adap-
tation involves preventing a robot from damaging itself by colliding into certain types of obstacles.

1.3. Contributions of EUD-MARS

There are existing approaches that aim to enable end-users to visually program robots. Some approaches aim to sup-
port professional programmers in the development of model-driven and adaptive robotics software. EUD-MARS generally
differs from existing approaches in its aim to enable end-users, who are not professional programmers, to visually pro-
gram model-driven adaptive robotics software. EUD-MARS makes the following contributions:

1. Concepts that integrate visual programming with model-driven software development to make the latter accessible
for end-users, thereby enabling them to benefit from this useful software engineering technique;

2. Concepts that integrate visual programming with adaptive software development, and enable end-users to develop
adaptive robotics software in a simplified manner;

3. An approach that divides the work required to develop robotics software between professional software developers
and end-user programmers; this way, software developers would prepare the technical underpinnings through ex-
tensible robot profiles and API configurations that lay the foundation for end-users to develop model-driven adap-
tive robotics software systems for various types of robots without having to deal with complex technical details;

a) Robot-Independent Action Sequence b) Adaptation Based on Context of Use

Fig. 2. A simple example of an EUD-MARS visual program containing an (a) action sequence and an (b) adaptation. The action se-
quence is robot-independent in the sense that it is not coupled with one type or brand of a robot but can be executed on different
robots that support a common set of actions (in this example “move forward” and “stop”). The adaptation stops a robot and pre-
vents it from moving forward if the robot’s color sensor detects a red color.

4 P. A. Akiki et al. / Science of Computer Programming

4. A tool to support software developers in the definition and maintenance of robot profiles and configurations;
5. A tool to support end-user programmers in the development of robotics programs using the concepts and visual lan-

guage offered by EUD-MARS.
We evaluated EUD-MARS from different perspectives as follows:
 We conducted a technical evaluation by using EUD-MARS to program different types of robots, and by assessing the

paradigm (interlocking blocks) of its visual programming language against the recommendations of the cognitive
dimensions framework [101].

 We asked software developers to prepare robot profiles and API configurations using EUD-MARS and to provide
feedback on strengths and points for improvement concerning the overall approach and its supporting tool for soft-
ware developers.

 We asked end-users to explain and develop EUD-MARS programs, and to provide feedback mainly on understanda-
bility, ease-of-programming, and desirability. End-users found the visual programs to be overall understandable and
easy to program, and they perceived the approach to be desirable.

Google developed Blockly as a JavaScript library for creating block-based visual programming languages. We should
note that although EUD-MARS uses Blockly for representing its visual programming language, it does not rely on any
technical concepts from Blockly. EUD-MARS merely uses Blockly as a way of visualizing its concepts (contributions 1 and
2). Even the program interpreter and the component that converts visual programs to XML (refer to Fig. 1) are EUD-
MARS components that do not rely on Blockly. Furthermore, in this paper, we do not aim to develop new robot APIs.
Hence, we used existing robot APIs for evaluating the contributions of EUD-MARS.

We should note that EUD-MARS does not aim to replace traditional code-based (text-based non-visual) programming
languages that professional programmers use for developing robotics systems. Code-based languages have many merits
and offer numerous advanced features such as object-orientation and complex data structures. EUD-MARS does not aim
to offer all these advanced features; for example, its visual language is not fully object-oriented. The main aim of EUD-
MARS is to provide a simple way for end-users to develop model-driven adaptive robotics software systems without go-
ing through the technical complications that require the expertise of professional programmers. These end-users can be
anyone who is not a professional programmer but is interested in programming robots. One example can be hobbyists of
any age who wish to program robots for entertainment purposes. Another example can be children who are programming
robots as part of an educational workshop. Since EUD-MARS primarily targets end-users, it supports robots that are usu-
ally available for end-users. For example, these robots include hobby drones like Parrot Bebop, educational humanoids
like NAO, and robots that hobbyists can put together using a kit like Lego Mindstorms. EUD-MARS does not currently
target complex robots, e.g., those used for industrial purposes, which professional programmers typically program using
code-based languages. In some cases, end-users can control certain robots through preprogrammed tools or physical con-
trollers. Nonetheless, there are many cases where end-users would like to program their robots to perform custom opera-
tions. This can be for fun, education, or some other real-life benefit. End-users can realize various applications by pro-
gramming robots visually. For example, young school students can program a prebuilt humanoid robot like NAO to per-
form dance moves or kick a ball. Older school students can put together a rover robot using a kit like Lego Mindstorms
and program it to drive within a closed area to identify objects of a certain color. Drone hobbyists can develop a custom
program that makes their drones fly in a certain pattern. In either case, end-users could decide to substitute their robot’s
hardware and would benefit from the model-driven nature of EUD-MARS. They would also encounter scenarios that re-
quire adaptation and would benefit from the adaptation features that EUD-MARS supports.

1.4. Structure of the article

Section 2 presents the strengths and shortcomings of the related work. Section 3 presents the concepts behind EUD-
MARS as UML class diagrams and explains each one. These concepts realize contributions 1, 2, and 3 stated in Section 1.3.
Section 4 demonstrates an example EUD-MARS program using visual blocks and XML. This example elaborates further on
the concepts presented in Section 3. Section 5 presents two tools that support programmers and end-users who wish to
use EUD-MARS. These tools realize contributions 4 and 5 stated in Section 1.3. We present the results of the technical,
software-developer, and end-user evaluations in Sections 6, 7, and 8 respectively. Section 9 presents our conclusions and
future work.

 Related work

The work presented in this paper spans the following areas: visual programming, end-user programming, robot pro-
gramming, and model-driven and adaptive robotics software systems. A variety of related work has focused on one or
more of these areas. There are visual programming tools and techniques for end-users. Some of these tools and techniques
are general, while others are robotics-specific. Some techniques apply model-driven development to robotics software.
There are reference architectures and approaches for developing various types of adaptive software systems including

 P. A. Akiki et al. / Science of Computer Programming 5

robotics software. There are middleware systems that aim to make it easier for professional software developers to pro-
gram robots. Although the work presented in this paper spans various areas, it focuses on the intersection between mod-
el-driven and adaptive robotics software development, and end-user software development using visual programming lan-
guages. This section presents an overview of the strengths and shortcomings of the related work and compares it to EUD-
MARS. There are existing surveys of literature that offer more information on the following areas of related work:
 end-user software development [8,9],
 robot programming systems and middleware [10–13],
 model-driven development [14,15], and
 adaptive software systems [16–18].

2.1. Visual end-user programming approaches

Several existing visual programming approaches target end-users. Some of these approaches are general and not di-
rectly related to robots. For example, TouchDevelop enables end-users to develop software applications visually by using
smartphones [19]. Alice aims to simplify early programming courses [20]. MashSheet [21] and Vegemite [22] target the
development of mashups. Other approaches are directly related to the end-user development of robotics software. What
follows is an overview of the approaches related to robotics software development.

Microsoft Robotics Developer Studio (MRDS) supports the visual development of robotics software, using the Microsoft
Visual Programming Language (MVPL) [23]. This language provides visual programming blocks that programmers can tie
to each other using line connections. MRDS offers an advanced 3D simulator, which has a physics engine and allows the
placement of multiple robots in a realistic simulation environment. Both hobbyists and professional software developers
can program robots with MRDS. Hobbyists can perform visual programming using a drag and drop interface, and profes-
sional software developers can write code using Visual Studio.

EV3 is a programming tool that supports the development of robotics software for controlling robots constructed using
the Lego Mindstorms robotics kit [24]. Lego primarily intended the Mindstorms kit to be an educational tool, but both
professionals and hobbyists can use it. This tool has a visual programming paradigm that incorporates configurable pro-
gramming blocks. Programmers place these blocks next to each other in the intended order of execution. EV3 compiles
the visual programs and deploys them to Lego Mindstorms robots. Users can execute a program from a screen located on
the brick (contains the processor) of their robot.

End-users such as children and teenagers use Scratch to learn computer programming and create real-world applica-
tions [25]. Scratch’s environment offers visual building blocks that fit together to compose a program. Scratch mostly
supports working with on-screen objects, e.g., animated characters (sprites). Nonetheless, third-party extensions allow
Scratch to support the programming of physical robots such as Edbot [26], Lego Mindstorms robots, and drones.

RoboBlockly [27] is a web-based programming tool for learning programming by developing software applications that
control robots. Teachers also use RoboBlockly to teach mathematics and science. This tool uses the Blockly library as part
of its visual programming editor. RoboBlockly generates code in C++ that controls robots created using different types of
hardware such as Linkbot and Lego Mindstorms. Other researchers have developed another Blockly-based programming
language with a similar name called Robot Blockly [28]. The latter targets the development of programs for controlling
industrial robots, particularly a single-armed robot called Roberta. MORPHA also targets visual programming for industri-
al robots, and it presents a style guide of icons and symbols for visual robotics programs [29].

Some tools support the development of IoT and robotics software systems that run on general-purpose hardware plat-
forms such as Arduino and Raspberry Pi. It is possible to use these tools for programming robots that roboticists built
from scratch and for extending existing robots such as drones with new features. Examples of Arduino-specific approach-
es include: Ardublock [30], Modkit [31], and Sense [32]. Node-RED offers a web-based tool for programming devices and
services using visual blocks [33]. NETLab Toolkit supports the development of IoT applications for different hardware
platforms including Arduino and Raspberry Pi [34]. Both Node-RED and NETLab Toolkit provide visual programming
languages that use a box-and-line notation.

Code3 is a system that supports the visual programming of mobile manipulator robots [35]. This system targets both
non-roboticists and roboticists, and it aims to reduce the time (weeks) that is usually required to learn traditional robotics
programming systems. Code3 integrates CustomLandmarks, CustomActions, and CodeIt, which are three components
that its creators deem necessary for programming mobile manipulation tasks. CustomLandmarks allow users to create
landmarks that a robot can locate. CustomActions use programming by demonstration to make the manipulation of sim-
ple actions more accessible to novice users. CustomActions in Code3 build upon the work of Alexandrova et al. [36]. Co-
deIt extends the work of Huang et al. [37] to help users in specifying logic and complex task structures that are not possi-
ble to accomplish with CustomActions.

Several approaches support programming the NAO robot. SoftBank (previously Aldebaran) Robotics, the creators of
NAO, developed a tool called Choregraphe for programming the NAO robot using a box-and-line visual notation and Py-
thon [38]. Interaction Blocks is a tool for developing robotics programs using visual blocks that serve as interaction design

6 P. A. Akiki et al. / Science of Computer Programming

patterns [39]. TiViPE supports the development of robotics programs using a network of connected parametrized visual
components [40,41].

Stenmark et al. [42] presented a graphical interface for performing iconic programming of the ABB YuMi robot. The
authors proposed combining programming by demonstration and parametrized skill representations. With this approach,
users can select actions and store them as skills that they can reuse later.

ROBOTC [43] is a programming language that mainly supports educational robotics technologies such as VEX and
Lego Mindstorms. Expert and novice programmers can program robots with ROBOTC using either code or a visual lan-
guage. Programmers can display the output of their ROBOTC programs in a virtual simulation environment.

Some robot programming systems adopted flow-based visual programming languages [44]. RoboFlow enables end-users
to control robots by developing flowchart-like programs composed of visual tokens [45]. An evaluation study showed that
people with various backgrounds could quickly learn RoboFlow and use it to program robots effectively with a low error
rate. Interaction Composer aims to enable the collaboration of programmers and end-users in designing human-robot in-
teraction [46,47]. Interaction Composer supports the development of programs that follow a box-and-line notation that is
similar to the one used by EV3.

The approaches discussed in this section have many strengths. Both end-users and professional software developers
can use these approaches to program robots. These approaches support visual languages, which enable end-users to pro-
gram robots without incurring a steep learning curve. This is especially true in comparison to code-based programming
languages that target professional programmers. Some approaches do not directly target robotics programming but are
extensible in this direction. These approaches could be more difficult to use than the ones that provide robotics-related
functionality out of the box. We can see that the robot programming approaches discussed in this section are not model-
driven. End-users would have to redevelop a program that they intend to execute on different robots. For example, as-
sume that an end-user bought a NAO robot and built another humanoid robot using Lego Mindstorms. As humanoids,
both robots share some abilities such as walking and talking. However, with traditional approaches, running the same set
of instructions on both robots requires the end-user to develop two separate program versions. For example, end-users
could develop the NAO program version with Choregraphe and the Mindstorms program version with EV3. By following
a model-driven approach, an EUD-MARS program can run on different robots that support a common set of actions. EUD-
MARS also enables software developers to integrate a variety of code-based robot APIs and map them to their visual block
counterparts for end-users. This integration is done while maintaining the model-driven nature of EUD-MARS. Further-
more, unlike the existing approaches, EUD-MARS provides dedicated visual programming blocks for adaptation. Develop-
ing complex adaptations from scratch could require specifying many instructions to elicit and process context-of-use
changes and adapt a robot’s behavior accordingly. With EUD-MARS, end-users can simply use visual blocks out of the
box to handle events and specify what actions they want to invoke when an event triggers.

2.2. Model-driven development approaches for robotics software

The Object Management Group (OMG) Robotics Domain Task Force [49] recommends extending OMG technologies to
support the domain of robotics. For example, it is possible to use the model-driven architecture (MDA) as a reference for
developing robotics software systems. Several approaches apply model-driven development in robotics and primarily tar-
get technical stakeholders. We provide an overview of these approaches; more information is available in an existing sur-
vey of literature [48].

Blanc et al. [50] applied model-driven principles to develop software for Sony’s AIBO pet robot. This work represents
an early attempt to incorporate models into robotics software development. It uses models to represent the characteristics,
states, and behaviors of robots. The researchers developed prototypes to test their approach.

BRICS (Best Practice in Robotics) supports the generation of code from models via model-to-text transformations [51].
This saves software developers the time needed to write code manually and allows them to structure their designs. BRICS
implements model transformations using Epsilon [52]. BRICS represents its software models using what its creators call
“specific models”. These models conform to an abstract meta-model that in turn conforms to the “Ecore meta-meta-
model” [53]. BRICS separates concerns by differentiating five concerns (5Cs): computation, communication, coordination,
configuration, and composition. Computation represents a system’s core functionality (i.e., implementation of the domain
knowledge). Communication provides computation components with data while taking into consideration quality-of-service
properties like latency. Coordination determines how components work together. Configuration parameters influence be-
havior and performance. Composition couples components, while considering reuse and predictability of behavior.

 RobotML is a domain-specific language (DSL) for specifying missions, environments, and robot behaviors [54]. This
language aims to support the following qualities: ease of use, architecture-style neutrality, multiple platforms, and plat-
form independence. RobotML supports platform-independent definitions of a system’s internal structure (architecture),
the ways components send and receive data, and the robotic behavior. It enriches its domain model with an ontology that
represents the knowledge of robotics experts. RobotML comprises four packages: architecture, communications, behavior,
and deployment. The architecture package defines the concepts used to develop a robotics system. These include concepts

 P. A. Akiki et al. / Science of Computer Programming 7

that represent a system’s environment, data types that represent the data exchanged among components, and concepts
related to a robot’s mission. The communication package represents data exchange and service calls through ports and
connectors. The behavior package comprises concepts related to the evolution model that is defined using algorithms and
finite state machines. The deployment package comprises concepts related to the target platform such as middleware or
simulator. RobotML uses existing code generators to support various robotics middleware and simulation engines.

The SmartSoft project supports the development and integration of model-driven robotics software components
[55,56]. SmartSoft’s development approach involves the levels of abstraction proposed by MDA. A platform-independent
model (PIM) describes the system. A transformation converts the PIM into a platform-specific model (PSM), which is re-
fined to fit the selected platform. Another transformation converts the PSM to a platform-specific code-implementation.
The toolchain of SmartSoft offers the ability to define transformations between one level of abstraction and another.

V3CMM (3-View Component Meta-Model) provides platform independence by separating reusable platform-independent
parts from their platform-dependent counterparts [57]. V3CMM conforms to a component meta-model with three views:
structural, coordination, and algorithmic. The structural view comprises elements such as components, ports, and inter-
faces. State machines link this view to the coordination view. V3CMM represents its coordination and algorithmic views
using modified versions of UML state machines and activity diagrams. The coordination view incorporates UML state-
machine concepts such as state and transition. The algorithmic view enables developers to model and connect activities.
Example activities include calling operations from other components and external libraries. V3CMM uses ATL [58] and
JET [59] for model-to-model and model-to-ADA-code transformations respectively.

RobMoSys manages the interfaces between roles (participants) in its ecosystem [60]. These roles include, for example,
component supplier, system builder, behavior developer, performance designer, and system architect. RobMoSys aims to
manage the complexity in robotics system development, by separating the concerns among multiple roles. RobMoSys re-
lies on model-driven engineering and offers supporting tools. For example, it offers visual design tools for models that
represent concepts such as components and tasks. The tools of RobMoSys offer a workflow that allows people with differ-
ent roles to provide their input at an adequate abstraction level.

The benefits of model-driven development are apparent in several areas such as testing [61,62] and user interfaces
[63,64]. The use of model-driven development enabled the previously discussed approaches to offer technology independ-
ence concerning hardware platforms, programming languages, and middleware systems. Despite their benefits, these ap-
proaches primarily target professional software developers who have skills with traditional programming, modeling, and
transformation languages. It is unlikely that end-users would be capable or even willing to learn such software develop-
ment technologies since they would face many challenges and a very steep learning curve. Hence, EUD-MARS aims to
provide the underlying technical benefits of model-driven software development in a way that is suitable for end-users.
This is why EUD-MARS divides the work between professional software developers and end-users. Software developers
lay the technical groundwork that enables end-users to develop model-driven robotics software using a simple visual pro-
gramming language.

Some approaches apply model-driven development to robotics software and involve a variety of stakeholders including
those who do not possess major technical expertise. LightRocks is a DSL for robot programming that offers three levels of
abstraction, which embody the knowledge of different stakeholders including domain experts and technicians [65]. Light-
Rocks uses UML/P statecharts out of which it generates code-based programs that are executable against robots. Light-
Rocks was evaluated with two test cases involving (1) driving a wood screw into a cube and (2) plugging electrical parts
on a rail. Adam et al. [66] presented an infrastructure for developing service robotics applications (e.g., for hospitals). Like
LightRocks, this infrastructure aims to support the input of different stakeholders such as domain experts and robotics
experts. It aims to enable domain experts to contribute their knowledge using DSLs instead of general programming lan-
guages. Adam et al. tested their overall approach in a hospital environment.

Although LightRocks and Adam et al. use abstraction to incorporate the skills of different stakeholders, they primarily
do not aim to support end-users the way EUD-MARS does. These approaches considered the input of domain experts ra-
ther than just technical experts, but EUD-MARS aims to empower end-user to become programmers. From this perspec-
tive, we can see that LightRocks relies on statecharts and Adam et al. rely on code-based DSLs that would be more techni-
cally challenging for end-users in comparison to the block-based visual language of EUD-MARS.

FLYAQ is a tool that enables non-technical end-users, such rescue workers, to specify missions for a team of multicop-
ters [67–69]. It provides a DSL called Monitoring Mission Language (MML) that supports graphical mission definitions.
FLYAQ calculates waypoints and trajectories from missions and represents them using a language called QBL.

Although FLYAQ targets non-technical end-users, it primarily focuses on programming multicopters, whereas EUD-
MARS works with a variety of robots. This is apparent in FLYAQ’s graphical tool, which although hides technical details
from non-experts, integrates with a mapping system (Open Street Map) due to the tool’s focus on multicopters. Hence,
FLYAQ assumes that there are trajectories that it will calculate from missions and concepts like no-fly zones. EUD-MARS
does not make assumptions tied to a single type of robot. For example, an end-user might decide to use EUD-MARS for
programming a robotic arm intended for hobbyists. In this case, the robot is fixed and has no trajectories or no-fly zones
on a map. Another example can be programming a humanoid robot that does not fly. Ciccozzi et al. [70] have extended
FLYAQ to support another type of robot, namely underwater vehicles, within a multi-robot system. An extension to part

8 P. A. Akiki et al. / Science of Computer Programming

of the DSL was required to support the new type of robot. On the other hand, EUD-MARS is extensible by design through
robot profiles that allow it to support various robots not necessarily considered during its initial design. Hence, it is not
necessary to go back and extend DSLs and tools with new concepts for each new type of robot. EUD-MARS automatically
and dynamically reflects added robot profiles in its visual language and end-user programming tool. We used several ro-
bots to assess EUD-MARS for this paper; it is possible to add more robots in the same way. The ability to specify concepts
like no-fly zones and operations like movements on a dedicated visual representation of an environment, e.g., like a map
in FLYAQ, has its advantages. However, it would be better if this were not at the cost of generality in terms of supporting
different types of robots. For example, in a commercial vehicle tracking system that some of us worked on more than a
decade ago, we used Google Maps to enable end-users to visually manage concepts like restricted geographical zones,
trajectories, and points of interest for vehicles. Yet, this vehicle-tracking system only targeted cars and trucks. The visual
block-based language of EUD-MARS is more general and less restrictive in terms of supporting different types of robots.
Currently, EUD-MARS provides a basic two-dimensional simulator. However, it is possible to extend this simulator in the
future to provide a basis for supporting programming by demonstration. Then, end-users could specify parts of their pro-
grams in robot-specific simulators without losing the generality of the visual programming language. Yet, this feature
requires the design of a generic extensible simulation environment, which is out of the scope of this paper.

2.3. Reference architectures for adaptive software systems and adaptation approaches for robotics

Researchers have proposed several reference architectures for developing adaptive software systems. These architec-
tures can serve as a reference for developing robotics software systems that are a type of autonomic (self-managing) soft-
ware system. MAPE-K is a reference model for autonomic computing, which considers software systems to be a set of
managed resources [71]. MAPE-K supports knowledge sharing among four functions: monitor, analyze, plan, and execute.
The Rainbow framework uses a control loop to manage self-adaptive systems, and it realizes the functions of the MAPE-K
loop [72]. Rainbow comprises the following components: model manager, constraint evaluator, and adaptation engine.
The Three Layer Architecture is an architectural approach and a conceptual reference for self-managing software systems;
it comprises three layers: component control, change management, and goal management [73].

These reference architectures are useful for professional software developers, who aim to develop adaptive software
systems related to robotics or other areas. They standardize the layering of adaptive systems and offer a high-level design
of the components that are necessary for implementing these systems. However, reference architectures are too theoreti-
cal for end-users to follow, even if they have basic software development skills. Hence, as with model-driven develop-
ment, EUD-MARS aims to allow end-users to program adaptive robot behavior while hiding the unnecessary complexity.
We do not claim that EUD-MARS will allow end-users to develop adaptive software systems that are as advanced as the
ones developed by professional programmers. Nonetheless, we aim to provide end-users with the ability to develop basic
adaptive robot behavior using predefined building blocks that hide the theoretical suggestions of reference architectures
and the complexity of code-based implementations.

Some robot behavior adaptation approaches built upon FLYAQ (refer to Section 2.2), which attempts to involve differ-
ent stakeholders in the robotics development process. Bozhinoski et al. [74] presented an approach for runtime adaptation
of unmanned aerial vehicle (UAV) systems, which comprise humans, drones, and devices like cameras and sensors. Their
adaptation model operates on a group of autonomous entities (computational or human actors) that collaborate to accom-
plish tasks. The authors plan to integrate their approach with FLYAQ. Dragule et al. [75] also proposed a FLYAQ exten-
sion to support the specification of adaptive and resilient missions.

Like FLYAQ, the adaptation work based on it focuses on a particular type of robot, namely swarms of UAVs organized
in different topologies. Additionally, Bozhinoski et al. assume that each entity within their system implements the MAPE
loop based on a state machine diagram that they defined. These approaches have their merits concerning adapting behav-
ior within a UAV system, but the purpose of EUD-MARS is different. Although some collaboration among robots is possi-
ble with EUD-MARS, the primary objective of this system is not about supporting robot swarms. Additionally, with EUD-
MARS, there is no assumption that robots implement the MAPE loop. The types of adaptations that EUD-MARS supports
involve the execution of robot-supported actions based on changes in the context of use. This requires monitoring (e.g.,
through sensors) and execution (e.g., restrict value), but EUD-MARS does not expect non-technical end-users to program
complex adaptations for large-scale scenarios. Nonetheless, if a robot’s API supported a MAPE-based or other prepro-
grammed adaptation algorithm, EUD-MARS can invoke it as an action. The simplicity of the adaptation operations sup-
ported by EUD-MARS offers the advantage of making them applicable out-of-the-box to different types of robots and un-
derstandable and usable by end-users. These operations act as small blocks in the style of IFTTT (If This Then That) [76],
but targeted towards robots and usable within a visual block-based program. Adding complexity to the way end-users
program adaptations could make things more difficult for them and preconceiving special-purpose preprogrammed adap-
tation mechanisms could decrease the generality of the adaptation blocks. The application of a reference architecture like
the MAPE-K and the realization of automated adaptation based on predefined algorithms could be typical in large-scale

 P. A. Akiki et al. / Science of Computer Programming 9

industrial systems. However, as we previously mentioned (refer to Section 1.3), EUD-MARS does not intend to replace
these conventional approaches but rather to empower end-users with a simple enough approach.

2.4. Robotics middleware

The techniques for developing robotics software systems vary depending on the heterogeneity and diversity of the in-
volved components. Robotics middleware systems are a type of software technology designed to manage complexity and
heterogeneity in robotics. These systems aim to simplify software design and hide the complexity of low-level communi-
cation with robots by acting as an abstraction layer between operating systems and software applications. Robotics mid-
dleware systems generally follow a component-based development approach [77,78]. We present a brief overview of some
of the existing robotics middleware and the systems that extend them. We primarily focus on the Robot Operating System
(ROS) since it is likely the most widely used robotics middleware today.

ROS offers libraries and tools that support the development of robotics software using different programming lan-
guages (e.g., C++ and Python) [79,80]. It allows multiple development groups to collaborate and build upon each other’s
work. ROS programs communicate over a peer-to-peer network using the following types of communication components:
topics, services, and actions. Topics support data streams between nodes. Nodes can publish and subscribe to topics using
a central node and can communicate synchronously and asynchronously using services and actions respectively.

ROS offers a standardized way for developing robotics software. However, this does not necessarily provide hardware
independence the way model-driven development does. Several researchers presented model-driven software develop-
ment techniques that use ROS. Hua et al. [82] presented a model-driven approach that supports the development of soft-
ware for controlling industrial robots by using model transformations to generate executable ROS code. ReApp is a ROS-
based and model-based approach that attempts to address the problem of programming language diversity in robotics and
makes the use of robots economically feasible for small and medium-sized enterprises (SMEs) [83]. Bardaro et al. [81] pre-
sented a robotics software development approach that separates the competencies of software engineers and robotics ex-

Fig. 3. Abstract and concrete robot profiles.

10 P. A. Akiki et al. / Science of Computer Programming

perts. EUD-MARS attempts to perform a separation of competencies that is similar to Bardaro et al. but between software
developers and end-users. Unlike Hua et al., EUD-MARS does not perform code generation from its models but rather
interprets and executes them at runtime while taking into account constraints that adaptations impose.

Other existing middleware systems are similar to ROS in terms of their objectives but differ in terms of their capabili-
ties and are less widely used. These systems primarily target professional software developers and are programmed using
code-based languages. The Open Platform for Robotic Service (OPRoS) aims to facilitate the development of robotics soft-
ware using off-the-shelf components [84,85]. Similarly, the Robot Technology (RT)-Middleware, Miro [86], and Orocos [87]
support the development of component-based robotics software using the Common Object Request Broker Architecture
(CORBA) [88,89]. Other examples of robotics middleware systems include ORCA [90] and Player [91].

The capabilities that ROS offers are certainly useful and currently adopted by many robotics software developers.
However, ROS and the existing model-driven approaches that extend it do not directly support end-users through a visual
programming language the way EUD-MARS does. Hence, ROS programmers typically use code-based programming lan-
guages that could be more daunting and introduce a higher learning curve for end-users. Furthermore, these approaches
do not support adaptation operations out of the box in a way that is easily accessible to end-users. The same applies to the
other middleware systems. As Fig. 1 shows, the underlying communication between EUD-MARS programs and robots
goes through robot APIs. Software developers can build these APIs either from scratch or on top of one of the existing
middleware systems such as ROS. EUD-MARS does not target this underlying low-level communication. Hence, it does
not aim to be an alternative for existing middleware systems such as ROS. EUD-MARS rather aims to create a level of
abstraction that allows programmers to set up the groundwork that enables end-users to develop model-driven adaptive
robotics software in a simplified visual way. With model-driven development, it is possible to use alternative underlying
implementations such as middleware. For example, RobotML uses code generators to support various robotics middleware
(refer to Section 2.2). Instead of generating code, EUD-MARS interprets programs at runtime (refer to Fig. 1) and can exe-
cute them using different underlying implementations. In ROS, nodes use a central (Master) node to communicate. In

Fig. 4. Mapping between concrete robot profiles and robot APIs.

 P. A. Akiki et al. / Science of Computer Programming 11

EUD-MARS, a program created by an end-user runs on a device (e.g., computer) and acts as a central node that can relay
information among the robots. The next section presents the concepts of EUD-MARS and explains how these concepts
support end-users in developing model-driven and adaptive robotics software systems.

 EUD-MARS concepts

This section presents the technical concepts of EUD-MARS that include robot profiles, APIs, and the mappings be-
tween them. These concepts also include robotics program elements such as action sequences, events, variables, controls
structures, utilities, and adaptations. We present EUD-MARS’ concepts as UML class diagrams and explain them in the
text. We repeated a few UML packages and classes, colored in gray, across figures and within the same figure to show
associations more clearly and to avoid overlapping lines as much as possible.

3.1. Robot profiles and their mapping to APIs

Software developers prepare robot profiles and API configurations as a preliminary setup that enables end-users to
program robots using the visual language of EUD-MARS. The class diagrams in Fig. 3 and Fig. 4 encompass the concepts
of this preliminary setup.

As shown in Fig. 3, RobotProfiles describe the Actions and Sensors that the robots support. Examples of Actions include
move-forward, stop, and speak. On the other hand, examples of Sensors include color, pressure, and proximity. An Action
can have Parameters. For example, a “move forward” action requires the speed at which a robot will move. A Sensor pro-
vides Readings of data that it acquired from a robot’s physical environment. One example SensorReading is a robot’s prox-
imity from physical objects. Like Actions, SensorReadings can also have parameters. Both Actions and SensorReadings have
return types. The DataType and ResultType enumerations denote the parameter types and the return types respectively.
We represent robot profiles on two levels of abstraction. AbstractRobotProfiles embody most of the information regarding

Fig. 5. Action sequences.

12 P. A. Akiki et al. / Science of Computer Programming

a robot’s Actions and Sensors. Every AbstractRobotProfile maps to one or more ConcreteRobotProfiles, which in turn map to
APIs. For example, an AbstractRobotProfile called “Rover” can map to two ConcreteRobotProfiles representing Lego Mind-
storms and VEX hardware implementations of a rover robot. ConcreteSensorReadings represent, in the robot profile, data
reading operations performed by Sensors. Each ConcreteSensorReading maps to a method that realizes the reading opera-
tion in an API. When a ConcreteRobotProfile maps to an AbstractRobotProfile, it shall implement all its Actions and Sensors.
Additionally, ConcreteActions and ConcreteSensorReadings have the same return type as their abstract counterparts. Hav-
ing ConcreteRobotProfiles acquire the characteristics of an AbstractRobotProfile supports the principle of reuse. Additional-
ly, either one of the concrete implementations can substitute the abstract concept. For example, both “Lego Mindstorms
Rover” and “VEX Rover” can substitute “Rover”. This is similar to the Liskov Substitution Principle from object-oriented
software design. An AbstractRobotProfile can inherit from another AbstractRobotProfile by specifying it as a base. For ex-
ample, an AbstractRobotProfile called “Driving Robot” can represent a robot that is capable of moving in different direc-
tions and stopping. The following robots all have driving capabilities: rover, vacuum cleaner, and drone. Hence, their Ab-
stractRobotProfiles can inherit all the Actions and Sensors from the “Driving Robot” profile by specifying it as their base.
Actions are executable (“IExecutable”) indicating that end-users can execute them to command a robot. We differentiate
executable commands from other elements because our system supports blocking the execution of such commands based
on changes in the context of use as we explain later in the paper.

As shown in Fig. 4, ConcreteRobotProfiles map to code-based APIs that control robots. APIs typically comprise
Namespaces (packages), Classes, and Methods. A ConcreteRobotProfile is associated with an APIConfiguration. In turn, the
latter comprises MappingGroups containing Action and SensorReading Mappings that connect ConcreteActions and Con-
cereteSensorReadings to their respective APIMethods. MappingGroups also map the parameters of ConcreteActions to their
matching APIMethodParameters. Each RobotAPIConfiguration is also associated with one or more Connections. Each Con-
nection has an IP address, a port name, and a label. A Connection could require both an IP and a port or just one of them.
The label identifies the use of the Connection. For example, the left movement motor of a Lego Mindstorms robot could be
using “PortB” and has a label that is “LeftMovement”.

We used the concept of a RobotProfile to represent the capabilities of robots because these profiles provide levels of ab-
straction (abstract and concrete). RobotProfiles also offer the extensibility for supporting different types of robots. Hence,
EUD-MARS is by design independent of the types of robots that software developers will integrate into it. We derived the
concept of an API from the real world where robot providers and third parties develop robotics APIs using code-based
programming languages. These APIs enable professional software developers to control robots from their software appli-
cations. They can be bundled, for example, as reusable libraries. As part of the evaluation with robots, we extended and
used APIs that are available for the robotics kit (Lego Mindstorms) and the robots (NAO and Parrot Bebop 2) that we used.
In this paper, we did not target the integration of robotics middleware such as ROS with EUD-MARS, because we primari-
ly aimed to realize scenarios for evaluating our approach with users and we were able to do this using the available APIs.
Hence, EUD-MARS makes direct calls to the APIs that in turn communicate with the robots (e.g., through Bluetooth and
TCP/UDP). Nonetheless, with our model-driven approach as demonstrated by adding existing APIs, it is possible to use

Fig. 6. Events, variables, control structures, and utilities.

 P. A. Akiki et al. / Science of Computer Programming 13

alternative underlying implementations to support middleware in the future. For example, it is currently possible to swap
one API with another by simply changing the mappings between a RobotProfile and its corresponding API.

3.2. Action sequences

Each EUD-MARS Program has a RobotPool that contains the collection of Robots available for programming. These Ro-
bots are the ones that software developers preconfigured for end-users, by preparing RobotProfiles and API Mappings (re-
fer to Section 3.1). EUD-MARS Programs also have ActionSequences that embody the Actions used to command a robot for
performing a task. The class diagram in Fig. 5 encompasses the concepts related to ActionSequences.

ActionSequences can be abstract or concrete. There are two types of AbstractActionSequences. The first type is Virtual-
AbstractActionSequence, which represents an operation that multiple robots can perform each in their way. One example
of this type of action sequence is “PerformGreeting”. A humanoid robot can wave its hand and say hello, whereas a drone
can fly in a certain pattern to greet a person. The second type is ActualAbstractActionSequence, which end-users can place
inside a VirtualAbstractActionSequence to specify how each robot carries out an operation such as “PerformGreeting”.
Each ActualAbstractActionSequence contains AbstractActions and AbstractSensorReadings that a particular type of robot
can perform. An AbstractActionSequence can have parameters of different types.

 Each ActualAbstractActionSequence maps to a ConcreteActionSequence, which in turn contains ConcreteActions and
ConcreteSensorReadings pertaining to a type of Robot. Like Actions (refer to Section 3.1), ActionSequences are also executa-
ble (i.e., implement IExecutable) and can thereby be blocked from executing based on changes in the context of use.

Fig. 7. Adaptation based on the context of use.

14 P. A. Akiki et al. / Science of Computer Programming

As shown in Fig. 5, each of the binary many-to-many relationships connecting ActionSequences to Actions and Sen-
sorReadings has an association class related to a Robot that represents an attribute on the relationship. This attribute de-
notes the Robot on which EUD-MARS shall execute each robot-specific Action in an ActionSequence.

We organized the visual programs of EUD-MARS into ActionSequences, as shown in Fig. 5, to create different levels of
abstraction and to make the visual programs resemble a simplified form of code-based programs. The levels of abstraction
are abstract and concrete as is the case with the robot profiles (refer to Section 3.1). Hence, abstract sequences are inde-
pendent of the underlying technology whereas concrete sequences comprise elements (actions and readings) of concrete
robot profiles that in turn map to APIs. As programming constructs, ActionSequences act like functions in code-based pro-
grams and can fulfill different purposes. AbstractActualActionSequence acts as a standard parameterized function that em-
bodies reusable logic and is callable from other ActionSequences. VirtualAbstractActionSequence acts as a pure virtual
method that does not have any implementation of its own. End-users provide different robot-specific implementations for
a VirtualAbstractActionSequence using ActualAbstractActionSequences. This resembles the concept of overriding in code-
based programs. Since the visual language does not support classes, end-users perform “overriding” by visually placing
the ActualAbstractActionSequences within their corresponding VirtualAbstractActionSequences and selecting the target
RobotProfile for each sequence. A visual program defined by end-users contains ActionSequences in a way that is similar to
how procedural programs are comprised of functions.

3.3. Events, variables, control structures, and utilities

As with any program, visual EUD-MARS programs support Events, Variables, ControlStructures, and Utilities. End-users
can use these concepts in ActionSequences alongside Actions and SensorReadings. The class diagram in Fig. 6 encompasses
these concepts.

The execution environment of a program triggers Events when an occurrence happens. Examples of Events include de-
tecting when the user presses a key or when there is a change in the context of use. End-users can handle Events to exe-
cute instructions. For example, when a robot detects that it is within a close distance to an object, it executes the “stop”
Action to avoid a collision.

EUD-MARS programs support If-Conditions, Loops, and Variables. These act like their counterparts in code-based pro-
gramming languages. If-Conditions evaluate to “true” or “false” indicating whether or not the instructions within shall
execute. For-Loops iterate based on a counter while ForEach-Loops iterate around the elements of a list. Supporting these
features in EUD-MARS enables end-users to develop useful programs. The type of a Variable is denoted by the DataType
enumeration, just like the types of parameters (refer to Fig. 3 and Fig. 5).

 End-users can use several Utilities such as TimeDelay, ColorCreator, and ListCreator. These Utilities enable end-users to
utilize functions that are common for various programs. The TimeDelay takes a time value (number) and a time unit such
as seconds, and it delays the execution of instructions until the time has passed; this is similar to “wait” or “sleep” func-
tions in code-based programming languages. The TimeDelay is useful for making a Robot wait for a specified time before
it proceeds with an Action. One example is that if an end-user wants to orchestrate dance moves with pauses for a hu-
manoid (e.g., NAO). The ColorCreator takes RGB values as numbers and returns the corresponding color value. End-users
can assign the returned color value to a variable or pass it directly to an ActionSequence as a parameter. The ColorCreator
enables end-users to create a specific color when it is not enough to choose from a predefined set in a color palette. One
example of the use of colors is when a program is instructing a robot to identify a color through its color sensor. The List-
Creator creates a list of values that the end-users could use within their programs. For example, end-users can create a list
of numbers using the ListCreator and then loop around this list and pass each of its values to an Action. As a visual con-
struct, the ListCreator allows the definition of an expandable number of input elements that end-users would supply with
variables out of which they want to create a list.

3.4. Adaptation based on the context of use

In addition to being model-driven, another main feature of EUD-MARS programs is their support for adaptation based
on changes in the context of use. The class diagram in Fig. 7 encompasses the concepts related to adaptation.

 End-users can use WhenContextChanged events and ContextConditions to detect changes in a robot’s context of use.
End-users can apply ContextConditions to a variety of ContextElements that have one of the following three types: user,
platform, and environment. Calvary et al. [92] decomposed the context of use into these three facets. A Role is an example
of a UserContextElement. End-users can use roles to distinguish between different types of users. For example, an “adult”
user would have access to more features than a “child” user. Robot type, battery level, and temperature are examples of Plat-
formContextElements. For example, end-users could enable and disable actions based on the robot’s battery level and tem-
perature. This allows the battery to last longer so the robot can perform critical tasks and allows the robot’s temperature
to cool down. End-users can also setup adaptations based on changes in EnvironmentContextElements such as the proximi-
ty of a robot from objects detected by a proximity sensor, colors detected by a robot’s color sensor, and force applied on a

 P. A. Akiki et al. / Science of Computer Programming 15

robot’s pressure sensor. Robot sensors are the most common source of context-of-use change detection. These sensors
inform a program of changes in real-time, so it can trigger immediate adaptations.

End-users can attach WhenContextChanged Events to several ExecutionPermissions, which include the following types:
BlockExecution, ExecuteAlternative, and RestrictValue. BlockExecution prevents a robot from executing an IExecutable (ac-
tion or action sequence; refer to Sections 3.1 and 3.2) based on the value of a ContextElement. For example, as long as the
role of the user is “child” or as long as the robot’s color sensor is detecting a green color, prevent the robot from shooting
pellets. ExecuteAlternative executes an alternative IExecutable when the context changes. For example, when a robot re-
ceives a “move forward” command and is about to fall off an edge, alternative actions would be “move backward” and
“stop moving”. RestrictValue sets a minimum and a maximum for the value given to a parameter of an IExecutable. For
example, end-users can restrict the speed at which a robot moves based on certain roles or battery levels.

Providers that implement the IContextElementValueProvider interface are responsible for providing the program with
the values of ContextElements. A few of these values are preset and seldom change, e.g., roles, but most values are contin-
uously changing in real-time, e.g., color, battery level, proximity, and pressure. Software developers predefine value pro-
viders that end-users can use in their programs out of the box. The type of a Provider can be either “sensor” or “custom”
indicating that it reads values from either a Sensor or a different source respectively. Sensors and SensorReadings are al-
ready part of RobotProfiles (refer to Fig. 3). Hence, a SensorProvider refers to the SensorReading from which it obtains the
value of a context element. Professional software developers preprogram CustomProviders and configure them by linking
each one to an APIMethod. An API here represents reusable code; it encompasses the same concepts as a robot API (refer
to Fig. 4). Currently, software developers can program CustomProviders as a C# class library or Python script that EUD-
MARS can call dynamically the same way it does with robot APIs. Other programming languages can be similarly sup-
ported in the future. CustomProviders do not directly relate to a particular robot. An example of a CustomProvider is one
that provides the role of a user (e.g., “child” or “adult”), by reading it from a file.

The adaptations supported by EUD-MARS involve modifying a robot’s behavior based on changes in the context of use
detected using Events (WhenContextChanged). When an end-user executes a program, EUD-MARS monitors the respective
Events in parallel to detect changes in ContextElement values read by the corresponding Providers. New values could indi-
cate a change in the context of use that requires an adaptation; this depends on the conditions that the end-user specified
in the Events (e.g., proximity < 100). EUD-MARS monitors the new ContextElement values using APIs (SensorProviders or
CustomProviders). The program interpreter of EUD-MARS either uses programming language events (e.g., in C#) or
callback functions to detect new values. We aimed to simplify the way end-users program robot-behavior adaptations by
providing adaptation-related blocks that they can place within Event blocks (e.g., Fig. 2b). Currently, EUD-MARS supports
three types of adaptation blocks based on the previously discussed ExecutionPermissions: BlockExecution, ExecuteAlterna-
tive, and RestrictValue. During the execution of a program, the interpreter holds a set of the currently active Execution-
Permissions. Upon detecting the triggering of an Event, the interpreter updates this set by adding or removing permissions
according to the context-of-use changes. For example, when the Event presented in Fig. 2b is triggered the program inter-
preter would stop “Lego Shooter Bot A” if it is currently moving forward. Then, the program interpreter would add to its
set of execution permissions an entry indicating that it shall prevent the execution of the “move forward” action on “Lego
Shooter Bot A” as long as the robot’s color sensor is still detecting a red color. During this time, the interpreter monitors
the colors detected by the sensor to remove the previously added execution permission when a color other than red is
detected. Then, the program interpreter goes back to monitoring the original condition (color equals red). While the in-
terpreter is executing a program, it checks if the execution of an Action violates an active execution permission to see
whether it has to block the Action, execute an alternative, or restrict a value.

3.5. Communication among robots

A single EUD-MARS program can include multiple robots that communicate and exchange data. End-users can realize
this communication in their programs by using a combination of Events and Action calls. Robots report changes that trig-
ger Events. End-users can handle Events in their programs and call parametrized Actions to invoke desired behaviors and
pass data to other robots. The host device on which an EUD-MARS program is running acts as a central node that enables
robots to communicate and exchange data. What follows are example scenarios of communication among robots that are
part of the robot pool of an EUD-MARS program.

Consider that there are two robots, e.g., drones, which end-users programmed to clear objects from a specific area. As-
sume that these robots want to alternate shifts depending on the battery level of the currently active robot. End-users can
use an Event in their program to receive a notification when the battery level of the active robot is lower than the desired
percentage. When this condition is true, the program calls an ActionSequence to command the idle robot to carry out the
task in place of the active robot. Afterward, the program calls another ActionSequence to command the active robot with
the low battery level to dock itself and recharge. This example explains how two collaborating robots convey, through the
program, data (battery level) and commands (ActionSequence for carrying out the task and ActionSequence for charging
the battery).

16 P. A. Akiki et al. / Science of Computer Programming

Consider another example where robots need to communicate to benefit from each other’s sensor capabilities. A drone
can use its flying ability and sensors to scout an area and detect objects. Assume that this drone needs to report the loca-
tion of the objects that it detected to ground rovers. End-user programs can use an Event to receive a notification when
the drone detects an object. When this event triggers, the end-users can acquire the drone’s location through a sensor.
Then, they can pass this location to the ground rovers by invoking a parametrized Action (e.g., drive to a location). The
data exchanged in this scenario are the locations of detected objects and the commands involve asking the rovers to drive
to these locations.

3.6. How the EUD-MARS concepts support the development of model-driven and adaptive robotics software

This subsection provides a further explanation of how the EUD-MARS concepts, shown in Fig. 3 to Fig. 7, support the
development of model-driven adaptive robotics software.

The separation of RobotProfiles into two levels of abstraction, namely Concrete and Abstract (refer to Fig. 3), allows a
common abstract representation to target multiple concrete implementations. For example, it is possible to use this ap-
proach to support cross-platform robotics programming. Hence, an AbstractRobotProfile provides a common level of ab-

<AbstractRobotProfile Name="DrivingRobot">
 <Actions>
 <Action Name="MoveForward" ReturnType="Void">
 <Parameters>
 <Parameter Name="Speed" Type="Number" />
 </Parameters>
 </Action>
 <Action Name="MoveBackward" ReturnType="Void">
 <Parameters>
 <Parameter Name="Speed" Type="Number" />
 </Parameters>
 </Action>
 <Action Name="TurnRight" ReturnType="Void">
 <Parameters>
 <Parameter Name="Speed" Type="Number" />
 </Parameters>
 </Action>
 <Action Name="TurnLeft" ReturnType="Void">
 <Parameters>
 <Parameter Name="Speed" Type="Number" />
 </Parameters>
 </Action>
 <Action Name="Stop" ReturnType="Void" />
 </Actions>
 <Sensors>
 <Sensor Name="ProximitySensor">
 <Reading Name="Proximity" ReturnType="Number" />
 </Sensor>
 </Sensors>
</AbstractRobotProfile>

<AbstractRobotProfile Name="ShooterBot" BaseProfile="DrivingRobot">
 <Actions>
 <Action Name="Shoot" ReturnType="Void" />
 </Actions>
 <Sensors>
 <Sensor Name="LightSensor">
 <Reading Name="Color" ReturnType="Number" />
 </Sensor>
 </Sensors>
</AbstractRobotProfile>

<AbstractRobotProfile Name="DriverBot" BaseProfile="DrivingRobot" />

<AbstractRobotProfile Name="VacuumCleaner" BaseProfile="DrivingRobot">
 <Actions>
 <Action Name="PlayMelody" ReturnType="Void">
 <Parameters>
 <Parameter Name="MelodyNumber" Type="Number" />
 </Parameters>
 </Action>
 </Actions>
</AbstractRobotProfile>

<ConcreteRobotProfile Name="LegoShooterBot" AbstractProfileName="ShooterBot" APIConfigName="LegoNXTShooterBotAPI" />

<ConcreteRobotProfile Name="LegoDriverBot" AbstractProfileName="DriverBot" APIConfigName="LegoNXTDriverBotAPI" />

<ConcreteRobotProfile Name="iRobotVacuumCleaner" AbstractProfileName="VacuumCleaner" APIConfigName="iRobotCreateAPI" />

Fig. 8. Example abstract and concrete robot profiles.

 P. A. Akiki et al. / Science of Computer Programming 17

straction above multiple ConcreteRobotProfiles that target specific hardware platforms. For example, the same AbstractRo-
botProfile can map to two ConcreteRobotProfiles representing two rovers, one developed using Lego Mindstorms and an-
other developed using VEX. Furthermore, it is possible to use an AbstractRobotProfile as a base for another one. Hence, an
AbstractRobotProfile can encompass functionalities that are common among multiple AbstractRobotProfiles that represent
different robots with common functionalities. This applies if these robots use the same hardware platform and or different
ones. The ConcreteRobotProfiles in turn map to platform-specific RobotAPIs (refer to Fig. 4) that software developers creat-
ed with code-based programming languages. Hence, our design also allows visual EUD-MARS programs to target multiple
APIs written in different programming languages.

When end-users use the general concepts provided by the highest level of abstraction (AbstractRobotProfile), they
would be indirectly writing a program that targets all the ConcreteRobotProfiles (and subsequently the RobotAPIs) that map
to this AbstractProfile. The same principle of abstraction applies in the ActionSequences shown in Fig. 5, with the Abstract,
Virtual, and Actual ActionSequences representing multiple levels of abstraction.

 The concepts in Fig. 7 enable end-users to develop adaptive robotics software in a standard and simplified manner.
This involves using Events that offer notifications when ContextElements change. Alongside these Events, end-users can
execute and block certain actions to change the behavior of a robot. These features save the end-users having to write
code-based programs from scratch to detect context-of-use changes and adapt a robot’s behavior. Writing code-based
programs is more complex and can significantly differ per robot. However, with the visual notation of EUD-MARS, the
development of adaptive behavior for different types of robots becomes more standard since it merely includes a combina-
tion of Events, Actions, and ExecutionPermissions. As previously mentioned, we do not intend to support an adaptation
mechanism that substitutes traditional technical solutions that follow reference architectures for adaptive systems (refer
to Section 2.3). Yet, we aim to enable end-users to incorporate some adaptation capabilities into their programs in a sim-
plified manner.

<ApiConfiguration Name="LegoNXTShooterBotAPI">

 <PortConfigurations>
 <PortConfiguration PortName="COM4" Label="NXTBrick" />
 <PortConfiguration PortName="A" Label="ShooterMotor" />
 <PortConfiguration PortName="B" Label="LeftMovementMotor" />
 <PortConfiguration PortName="C" Label="RightMovementMotor" />
 <PortConfiguration PortName="Fourth" Label="ProximitySensor" />
 </PortConfigurations>

 <MappingGroups>
 <MappingGroup NamespaceName="ShooterBot.LegoNXT" ClassName="ShooterBot">
 <ActionMappings>
 <ActionMapping ActionName="MoveForward" MethodName="MoveForward">
 <ParameterMappings>
 <ParameterMapping ParameterName="Speed" APIParameterName="Speed" />
 </ParameterMappings>
 </ActionMapping>
 <ActionMapping ActionName="MoveBackward" MethodName="MoveBackward">
 <ParameterMappings>
 <ParameterMapping ParameterName="Speed" APIParameterName="Speed" />
 </ParameterMappings>
 </ActionMapping>
 <ActionMapping ActionName="TurnLeft" MethodName="TurnLeft">
 <ParameterMappings>
 <ParameterMapping ParameterName="Speed" APIParameterName="Speed" />
 </ParameterMappings>
 </ActionMapping>
 <ActionMapping ActionName="TurnRight" MethodName="TurnRight">
 <ParameterMappings>
 <ParameterMapping ParameterName="Speed" APIParameterName="Speed" />
 </ParameterMappings>
 </ActionMapping>
 <ActionMapping ActionName="Stop" MethodName="Stop" />
 </ActionMappings>
 <SensorReadingMappings>
 <SensorReadingMapping SensorName="ProximitySensor" ReadingName="Proximity"
 MethodName="GetProximity" />
 <SensorReadingMapping SensorName="LightSensor" ReadingName="Color"
 MethodName="GetColor" />
 </SensorReadingMappings>
 </MappingGroup>

 </MappingGroups>

</ApiConfiguration>

<!--Similar configurations (e.g., NXTDriverBotAPI and iRobotAPI) are added for the other robots-->

Fig. 9. Example mapping between concrete level and API.

18 P. A. Akiki et al. / Science of Computer Programming

3.7. Currently supported concepts and extensibility

We presented the concepts currently supported by EUD-MARS in the meta-models shown in Fig. 3 to Fig. 7, and we
explained them in Sections 3.1 to 3.6. These concepts include robot profiles and API configurations that professional pro-
grammers prepare, and the end-users’ visual programming language constructs such as action sequences, adaptation,
events, variables, control structures, and utilities.

The currently supported robot profile and API concepts make EUD-MARS extensible by design concerning the integra-
tion of various types of new robots. This extensibility is due to these concepts conforming to the same generic meta-
model. Hence, for example, any new robot profile will have actions and sensors regardless of the type of robot. EUD-
MARS’ programming tool, visual-program-to-XML converter, and program interpreter (refer to Fig. 1) can automatically
incorporate new robot profiles without the need for modifying their source code or having to define new converters and
interpreters. The converter will still be able to transform the visual program to XML for the interpreter because the exten-
sions introduced by the robot profiles conform to the same meta-model. For example, a drone and a rover are both robots,
and “fly” and “move” are both actions. The end-user programming tool can display new robot profiles in the toolbox au-
tomatically since the concepts they comprise use the same style of visual blocks. For example, the visual block of an “ac-
tion” presents its name, parameters (if any), and the robot on which to execute it.

The currently supported programming language constructs allow end-users to create a variety of programs for control-
ling robots. However, we do not claim that this language is comprehensive. It is possible to extend the language’s con-
structs further in the future. For example, it is possible to add more types of adaptation blocks, utilities, control structures,
and even support for classes. Yet, what we have included so far is enough to assess adaptive model-driven software devel-
opment scenarios with end-users and to evaluate our approach with different types of robots. Unlike robot profiles and
API configurations, adding new constructs to the visual language requires extending the visual blocks, converter, and in-
terpreter. Professional programmers can use JavaScript to define new visual blocks (based on Blockly). The end-user pro-
gramming tool can display the new visual blocks in the toolbar, and thereby allow end-users to use them as part of their
programs. Programmers can extend the converter and interpreter using JavaScript and C# respectively to recognize the
new constructs.

Similarly, the interpreter requires extension if new API programming languages need to be supported. The interpreter
that we developed for this paper directly communicates with APIs written in C# (libraries) and Python (scripts). In the
future, we can adjust the interpreter to perform this communication through web-services to be able to support new lan-
guages without having to modify its code. Web services (e.g., RESTful services): (1) are a typical way of software system
integration; (2) enable software systems to communicate regardless of each system’s programming language and frame-

a) Visual Representation b) XML Representation

<VirtualAbstractActionSequence Name="RunAround">

 <ActualAbstractActionSequence RobotProfileName="DriverBot">
 <Repeat Times="3">
 <Action Name="TurnLeft">
 <Parameters>
 <Parameter Name="Speed" Value="50" />
 </Parameters>
 </Action>
 <Wait Seconds="2" />
 <Action Name="TurnRight">
 <Parameters>
 <Parameter Name="Speed" Value="50" />
 </Parameters>
 </Action>
 </Repeat>
 </ActualAbstractActionSequence>

 <ActualAbstractActionSequence RobotProfileName="VacuumCleaner">
 <Action Name="Spin" />
 <Wait Seconds="5" />
 <Action Name="MoveForward">
 <Parameters>
 <Parameter Name="Speed" Value="50" />
 </Parameters>
 </Action>
 <Wait Seconds="5" />
 <Action Name="Stop" />
 </ActualAbstractActionSequence>

</VirtualAbstractActionSequence>

Fig. 10. Example virtual action sequence with different implementations. The (a) visual program is what end-users develop, while the
(b) XML representation is what EUD-MARS generates from this program.

 P. A. Akiki et al. / Science of Computer Programming 19

work; (3) wrap around the functions that shall be called and make them accessible to external systems through HTTP.
Web services can be a typical solution to make EUD-MARS communicate with APIs written in languages that may not be
directly callable from C# (the language in which we programmed the interpreter). Researchers have used web services
with other robotics systems such as ROS [110,111]. As far as EUD-MARS is concerned, its API mapping mechanism (refer
to Section 3.1 and Fig. 4) would work in the same way whether its interpreter is calling an API’s functions directly or
through functions defined in a web service.

 An example EUD-MARS application

This section presents a working example that demonstrates the concepts explained in Section 3. We represented this
example visually as well as using XML. The visual representation follows the notation that we created using Blockly. The
XML representation is the underlying format of the visual programs of EUD-MARS, which end-users do not need to pro-
cess. An EUD-MARS interpreter is responsible for interpreting the XML-based programs and executing them at runtime
(refer Fig. 1). Software developers use XML to create artifacts such as robot profiles, which pave the way for end-users to

a) XML Representation of Context Elements and Providers

<ContextElements>
 <ContextElement Name="ShooterBotProximity">
 <Provider Type="Sensor" Name="ProximitySensor" ReadingName="Proximity" RobotName="ShooterBotA" />
 </ContextElement>
 <ContextElement Name="Role">
 <Provider Type="Custom" Name="RoleProvider" NamespaceName="MARS" ClassName="RoleProvider" MethodName="GetName" />
 </ContextElement>
</ContextElements>

b) Visual Representation of
Context Condition Sequence c) XML Representation of Context Condition Sequence

<ContextConditionSequence Name="ShooterBotCloseToObstacle">
 <ContextConditions>
 <ContextCondition>
 <ContextElement Name="ShooterBotProximity" RobotName="ShooterBotA"
 ComparisonOperator="<" Value="40" />
 </ContextCondition>
 </ContextConditions>
 <ExecutionPermissions>
 <PreventExecution>
 <ExecuteBeforePrevent>
 <Action Name="Stop" RobotName="ShooterBotA" />
 </ExecuteBeforePrevent>
 <Prevent>
 <Action Name="MoveForward" RobotName="ShooterBotA" />
 </Prevent>
 </PreventExecution>
 </ExecutionPermissions>
</ContextConditionSequence>

<ContextConditionSequence Name="RoleIsChild">
 <ContextConditions>
 <ContextCondition>
 <ContextElement Name="Role" ComparisonOperator="=" Value="Child" />
 </ContextCondition>
 </ContextConditions>
 <ExecutionPermissions>
 <RestrictValue>
 <ApplyPermissionOn>
 <Action Name="MoveForward" RobotName="ShooterBotA">
 <Parameters>
 <Parameter Name="Speed" MaxValue="50" />
 </Parameters>
 </Action>
 </ApplyPermissionOn>
 </RestrictValue>
 </ExecutionPermissions>
</ContextConditionSequence>

Fig. 11. Example adaptations based on the context of use. Software developers specify the (a) context elements and providers before-
hand. Then, end-users develop the (b) visual programs and EUD-MARS generates (c) XML representations from these programs.

20 P. A. Akiki et al. / Science of Computer Programming

develop programs visually. We should note that software developers could either create these artifacts directly using XML
or using a visual tool that we shall present in the next section.

This example starts with the definition of RobotProfiles as shown in Fig. 8. The “DrivingRobot” AbstractRobotProfile has
the following five actions: MoveForward, MoveBackward, TurnRight, TurnLeft, and Stop. All the actions, except Stop, take a
parameter called speed. The “DrivingRobot” also has a “ProximitySensor” that reads the proximity. This example also in-
cludes three robot profiles that use “DrivingRobot” as a base profile. These profiles are “ShooterBot”, “DriverBot”, and
“VacuumCleaner”. We can see that the “ShooterBot” adds a Shoot action and a LightSensor with a color reading. The “Vac-
uumCleaner” adds a PlayMelody action that takes a melody number as a parameter. The example also shows three Con-
creteRobotProfiles that connect the AbstractRobotProfiles to their respective APIs, by setting the API configuration names.
The example shown in Fig. 9 represents an API configuration. This example shows MappingGroups that connect actions,
parameters, and sensors to their corresponding API counterparts. This example also shows configurations of ports that
programs connect to for commanding robots. The ConcreteRobotProfiles, shown in Fig. 8, have the same configuration of
Actions and Sensors as their AbstractRobotProfile counterparts. Therefore, EUD-MARS performs automatic mappings by
copying the Actions and Sensors from the AbstractRobotProfiles to their concrete counterparts. On the other hand, as
shown in Fig. 9, software developers define mappings between ConcreteRobotProfiles and APIs, because the structure and
names can differ between a RobotProfile and its corresponding API. We should note that in the example shown in Fig. 8, it
happens to be that the Actions do not have return types (specified as void) and the SensorReadings do not have parameters,
but this is not necessarily always the case.

The VirtualAbstractActionSequence in Fig. 10 represents a “RunAround” operation and contains two ActualAbstractAc-
tionSequences. Each of the latter provides an implementation for a different robot, namely “DriverBot” and “Vacu-
umCleaner”. The “DriverBot” performs the “RunAround” operation by executing a loop that repeats three times the fol-
lowing actions: Turn Left, Wait, and Turn Right. On the other hand, the “VacuumCleaner” performs the “RunAround” op-
eration by executing the following actions: Spin, Wait, MoveForward, and Stop.

This example also contains an implementation of adaptive behavior, shown in Fig. 11. This implementation uses Con-
textElements and ContextConditions and applies ExecutionPermissions on certain actions when the context of use changes.
The “ProximitySensor” of the robot called “ShooterBotA” provides the value for the “ShooterBotProximity” ContextEle-
ment. On the other hand, a class called “RoleProvider” provides the value for the “Role” (i.e., the role of current robot user)
ContextElement. This example defines two ContextConditions. The first ContextCondition checks if the “ShooterBotProxim-
ity” is smaller than 40, then it triggers a stop action and prevents the robot from moving forward. This prevents the robot
from bumping into obstacles. The second ContextCondition checks that if the “Role” is “Child”, then it restricts the value of
the speed parameter on the “MoveForward” action to a maximum of 50. Here, we should note that a program does not
necessarily have to apply ExecutionPermissions to the same robot that triggered a change in a ContextCondition. For exam-
ple, if a robot detects a certain color, the program could prevent other robots from moving forward. We can consider this
as a form of communication (refer to Section 3.5) among the collaborating robots. Hence, the abilities, e.g., sensors, of one
robot could provide data for a ContextCondition that affects other robots, which might not have the same abilities. How-
ever, we should note that exploring collaboration among robots in-depth as was done in existing work, e.g., collaborative
security [93], is not the aim of this paper.

We used “ShooterBotA” as a name for the robot that is part of the example shown in Fig. 11. Hence, the RobotPool in
this example program can contain other shooter-bot robots with different names, and it can contain robots of completely
different types. As the example in Fig. 12 shows, each program comprises a RobotPool containing all the robots that the
program intends to control. We can see that there can be multiple instances of the same type of robot, which map to the
same ConcreteRobotProfile. For example, both ShooterBotA and ShooterBotB map to the LegoShooterBot profile, and both

<Program>
 <RobotPool>
 <Robot Name="ShooterBotA" Profile="LegoShooterBot" />
 <Robot Name="ShooterBotB" Profile="LegoShooterBot" />
 <Robot Name="iRobotCreateWhite" Profile="iRobotVacuumCleaner" />
 <Robot Name="iRobotCreateBlue" Profile="iRobotVacuumCleaner" />
 </RobotPool>
 <Events>
 <!--Contains the definitions of the events, e.g., the ones used for adaptation-->
 </Events>
 <ActionSequences>
 <!--Contains the definitions of the virtual and actual action sequences-->
 </ActionSequences>
 <ExecutableCalls>
 <!--Contains calls to executable elements, e.g., action sequences-->
 </ExecutableCalls>
</Program>

Fig. 12. Example showing the XML representation of a robotics program with its different sections.

 P. A. Akiki et al. / Science of Computer Programming 21

iRobotCreateWhite and iRobotCreateBlue map to the iRobotVacuumCleaner profile. As Fig. 12 shows, a robotics program
is composed of several sections. In addition to the RobotPool, a program contains the following sections: Events, ActionSe-
quences, and ExecutableCalls. The Events section contains events such as the ones used for adaptation. The ActionSequences
section contains the definitions of both the Virtual and Actual ActionSequences. The calls that end-users make to these Ac-
tionSequences are located under the ExecutableCalls section.

EUD-MARS generates XML representations like the one shown in Fig. 12 from the visual programs defined by end-
users. When end-users are developing a program, they could define the different elements, action sequences, events, and
calls using any visual organization that they choose. Upon saving a program and generating its XML representation, EUD-
MARS regroups the elements under the different sections shown in Fig. 12. Robot profiles, mappings, sequences, and ad-
aptations, presented in this section, are contained within programs such as the one shown in Fig. 12.

 After demonstrating this example of EUD-MARS and its XML-based representation, we should emphasize that EUD-
MARS only uses Blockly for the visual representation of its programs. It does not use Blockly for XML generation. The
XML representation of the programs comprises the EUD-MARS concepts presented in Fig. 3 to Fig. 7. A converter compo-
nent (from EUD-MARS) transforms the visual programs to an XML representation that is interpretable by an EUD-MARS
interpreter. We should also reemphasize that we do not expect end-users to define robotics programs using XML. We
provide end-users with a visual language that makes the development of robotics programs less challenging. The XML

a) Project Explorer b) Mapping Robot Profiles to APIs

c) Loading API Data from an Assembly

Fig. 13. EUD-MARS’ tool for assisting software developers in composing robot profiles and API configurations.

22 P. A. Akiki et al. / Science of Computer Programming

that we demonstrated in this section is the underlying representation of this visual language. Hence, with EUD-MARS,
end-users do not have to create, read, or update any artifacts using XML or any other text-based language. The next sec-
tion presents the tools that we devised to support the software developers and end-users who wish to use EUD-MARS.

 Tool support

 This section presents two tools that we developed. The first tool, shown in Fig. 13, supports software developers in
visually composing robot profiles and API configurations. The second tool, shown in Fig. 14, supports end-users in devel-
oping model-driven adaptive robotics software using the visual language that we created based on Blockly.

5.1. Tool for software developers

 As Fig. 1 shows, software developers are responsible for preparing profiles for the robots that end-uses want to pro-
gram. Software developers can define robot profiles using XML, like the examples shown in Fig. 8 and Fig. 9. They can
also use the visual tool (Fig. 13) that we developed for this purpose.

We can see in Fig. 13a how this tool loads entire robot profiles and API configurations into its project explorer. The
tree nodes of the project explorer have different icons and labels to show essential information. For example, the label of
an “action” is composed of the action’s name and return type. The project explorer displays multiple projects. Each pro-
ject is composed of the following items: abstract robot profiles, concrete robot profiles, API configurations, and all the
respective sub-items. The project presented in Fig. 13a corresponds to the examples from Fig. 8 and Fig. 9.

 It is possible to add and remove items as shown in Fig. 13a (bottom). When a software developer selects one of the
nodes in the project explorer, the tool displays a form for editing the details of the item that this node represents. For ex-
ample, upon selecting a sensor-reading-mapping it is possible to modify the sensor-name, reading-name, and the name of
the API method that maps to the reading. Software developers can associate API configuration mappings with robot pro-
files using the visual tool shown in Fig. 13b. After the software developers select an API method (Fig. 13b left) and an ac-
tion or a sensor reading (Fig. 13b right), they can map the two to each other with the click of a button.

Although it is possible to define robot profiles and API configurations manually as we previously mentioned, the tool is
also capable of generating this data from existing robot API libraries (Fig. 13c). The tool loads the API libraries dynamical-
ly and reads their meta-data that includes the following information: namespace (package) names, class names, method
names and return types, and parameter names and types. Upon loading this data, software developers can select the clas-
ses and methods that they need from the assembly. Then, they can use the tool to generate a skeleton for a robot profile
and an API configuration that maps this profile to the actual API (classes, methods, etc.). Afterward, software developers
can manually tailor the generated profiles and configurations according to their needs. Currently, it is possible to load API
data from .NET assemblies (class libraries) using reflection. Nonetheless, in the future, it is possible to extend this tool to
load API data from libraries defined with other technologies.

Fig. 14. EUD-MARS’ visual programming environment for end-users (based on Blockly).

 P. A. Akiki et al. / Science of Computer Programming 23

5.2. Tool for end-users

Tool-supported visual paradigms enable end-users to perform some of the programming tasks that professional pro-
grammers usually perform. Since we primarily intended EUD-MARS to be for end-users, we devised a visual program-
ming tool to complement it.

This tool (Fig. 14) is web-based and uses Blockly. The latter is a JavaScript library created by Google to support the de-
velopment of visual programming languages and tools [94]. Blockly represents coding concepts as interlocking blocks.
Scratch, the end-user visual programming tool has been using interlocking blocks since before Blockly’s initial release.
Researchers have used Blockly to develop languages for several types of applications including model checking [95], web
development [96], and data queries [97]. Blockly’s paradigm is similar to jigsaw puzzles, which researchers introduced
and evaluated in the area of end-user development [98,99]. We also used jigsaw puzzles as the visual notation for Visual
Simple Transformations (ViSiT), which is an approach that empowers end-users to wire together previously incompatible
IoT objects [100]. The previous work showed that end-users perceive visual interlocking blocks to be usable and learna-
ble. Hence, we used this visualization paradigm for EUD-MARS since it is a promising choice.

Using the tool that we developed, end-users can drag visual programming blocks from a toolbar (Fig. 14a) onto a can-
vas (Fig. 14b). These blocks represent concepts such as actions, action sequences, events, and so on. End-users can save
their visual programs to files and reload them later to continue their work (Fig. 14c). The toolbar contains some fixed ele-
ments such as the ones related to numbers and text. The toolbar also contains other elements such as actions, which are
loaded dynamically based on the program’s robot pool. End-users can drag and drop elements to move them around on
the canvas. They can also delete individual elements or the entire program (Fig. 14d). End-users can zoom the canvas in
and out to visualize the program in a better way on different resolutions.

End-users can run their programs directly from the tool (Fig. 14e). Since the programming environment is web-based,
we developed a desktop-based interpreter (using C#), which takes the XML-based output of the programming environ-
ment and executes it on the target robots. This tool interprets the XML-based programs and maps the elements to their
respective API counterparts, based on a configuration like the one presented in Fig. 9. Then, this tool loads the API librar-
ies and makes dynamic function calls to execute the program’s actions on the physical robots. As we explained in Section
1.1, when an end-user runs a program, the converter transforms the visual program to an XML-based representation that
the interpreter reads and executes. The interpreter interprets programs represented using the XML-based format of EUD-
MARS to stay independent from Blockly. The converter provides this independence by performing a transformation be-
tween the visual programs and the XML-based representation of EUD-MARS. This way, if we decide to substitute Blockly
with a different library or even create another end-user development tool (e.g., for the mobile or the desktop) we will not
have to change our interpreter. We would just need to extend the converter or develop another one to support different
transformations. We developed the converter for this paper using JavaScript because our end-user development tool is
web-based. This converter iterates through the elements of a visual program and generates the corresponding XML.

As we explained in Section 3, a program is composed of different constructs such as action sequences (e.g., Fig. 2a) and
events (e.g., Fig. 2b). A program has an entry action sequence that the program interpreter will execute first. This entry
action sequence can call other action sequences that can in turn call others and so on. We already explained in Section 3.4

Table 1. Robots Used in the Technical Evaluation

R
ob

ot

Lego Mindstorms
(Driver Bot)

Lego Mindstorms
(Shooter Bot) iRobot Create NAO Parrot Bebop 2

A
ct

io
n

s Move Backward, Move
Forward, Stop, Turn Left,
Turn Right

Move Backward, Move
Forward, Shoot, Stop,
Turn Left, Turn Right

Move Backward, Move
Forward, Play Music,
Set Mode, Spin, Stop,
Turn Left, Turn Right

Blink, Get Date,
Get Name, Is In Darkness,
Look At, Move To, Play
Sound, Point At, Say, Sit
Down, Stand Up, etc.

Enable Video, Land, Move
Backward, Move Down,
Move Forward, Move Up,
Pause, Take Off, Turn
Left, Turn Right

Se
n

so
rs

Ultrasonic Ultrasonic, Color
Battery, Bumper, But-
tons

Battery, Bumpers, Colli-
sion, Motor Heat, Posture,
Sonar, Tactile, etc.

Barometer, GPS, Magne-
tometer, Ultrasonic

24 P. A. Akiki et al. / Science of Computer Programming

that the interpreter handles events in parallel with the action sequences to monitor changes to the context of use and ap-
ply adaptations accordingly.

End-users can also execute their programs in a simple two-dimensional (2D) simulator (Fig. 14f). The simulator currently
supports basic movements that are displayable in a 2D environment. For example, it is possible to show a rover robot mov-
ing around. However, currently, it is not possible to simulate drones flying up and down since that would require a more
sophisticated 3D simulator.

 Technical evaluation

As we mentioned in Section 1.3, EUD-MARS aims to support an extensible number of robot types that are usually
available for end-users. Hence, this technical evaluation involved running EUD-MARS programs on a variety of such ro-
bot types. The visual language plays an important role in the ability of end-users to use EUD-MARS easily. Hence, we also
assessed the chosen visual paradigm (interlocking blocks) of our language against the recommendations of the cognitive
dimensions framework [101]. Furthermore, we conducted an efficiency evaluation that we report in the Appendix.

6.1. Variety of robots used

We evaluated the technique and tool presented in Sections 3 to 5 with the various robot types shown in Table 1. We
built two of these robots ourselves using the Lego Mindstorms [102] robotics kit. We called the first Lego Mindstorms
robot DriverBot because it can just move around on its three wheels. We called the second one ShooterBot because, in
addition to moving around, it can shoot plastic pellets. The ShooterBot robot has two engines that move its tracks and one
engine for operating the shooting mechanism. Both Lego Mindstorms robots have ultrasonic sensors that detect proximity
from obstacles. The ShooterBot is also equipped with a sensor that detects colors. The third robot we used is the iRobot
Create [103] programmable vacuum cleaner. This robot can perform various actions such as moving, spinning, and play-
ing music. The fourth robot is the NAO [7] humanoid that can perform human-like actions such as walking, talking, and
sitting. NAO is equipped with a wide variety of sensors for detecting battery level, collision, posture, and so on. The fifth
robot is a Parrot Bebop 2 [104] drone. The Bebop 2 is also equipped with several sensors, and it can perform typical drone
actions such as taking off, moving around, and landing.

The Lego Mindstorms, iRobot Create, and Parrot Bebop 2 were controlled using C# APIs. This is a natural selection
since we used C# to develop the desktop-based interpreter discussed in Section 5. However, APIs are not necessarily lim-
ited to C#. For example, the manufacturer of NAO, SoftBank Robotics, does not provide .NET (e.g., C#) implementations
for the recent versions of its API. The most common NAO API uses Python. Hence, we developed a C# API that internally
calls the Python API provided by the NAO manufacturer. This bridges our tool with NAO’s API, thereby allowing end-
user programmers to control NAO robots using EUD-MARS.

6.2. Choice of paradigm for the visual language

One of the reasons for using Blockly to develop the visual language of EUD-MARS is the maturity of this library and
its web-based nature. Another important criterion is also the usability of Blockly’s visual paradigm that constitutes inter-
locking blocks. A similar type of blocks, namely jigsaw puzzles, proved to be understandable by end-users in a previous
work that we did on end-user development for IoT [100]. In that work, we assessed our puzzle notation based on the cog-
nitive dimensions framework and with end-users. Here, we briefly explain how the Blockly-based visual language of
EUD-MARS also adheres to the criteria of the cognitive dimensions framework.

We can say that the EUD-MARS language is consistent since it provides common visual blocks that represent concepts
like action sequences and execution permissions. Once users learn how to use these blocks, they can apply their
knowledge to different situations. Concerning diffuseness, each type of visual element has a particular color and shape.
The reusability of action sequences reduces the number of blocks required in a program. This can improve a program’s
visibility. Furthermore, the Blockly-based visual blocks are comparable in size to the blocks used in existing visual devel-
opment environments like Scratch. It is possible to perform a progressive evaluation of a program by calling each action
sequence separately and observing its outcome on the target robots. This is similar to the progressive evaluation that
software developers perform with code-based programming. In terms of the abstraction gradient, EUD-MARS is abstrac-
tion-tolerant since end-users can develop programs using the provided visual elements. Nonetheless, end-users can create
new elements using action sequences. Then, they can call these new elements in their programs in a way that is similar to
how they call the elements that EUD-MARS provides out of the box. The adopted visual block notation helps end-users to
avoid possible “spaghetti” programs that might result from box-and-line notations that some existing systems use (refer to
Section 2). It is possible to add comments as a secondary notation on any visual block. Once added, comments appear in
the form of a clickable question mark that can bring up a text box for editing a comment’s content.

 P. A. Akiki et al. / Science of Computer Programming 25

 Evaluation with software developers

Although EUD-MARS mainly targets end-users, software developers play an important role in setting up the robots be-
fore end-users can start programming. Hence, we conducted a study with software developers whereby they defined ro-
bot profiles and API configurations using EUD-MARS, and then they offered insights on our approach’s strengths and
points for improvement. This evaluation is important to elicit the feedback of software developers on the technique for
setting-up new robot types and laying the groundwork for end-users to program model-driven adaptive robotics software
systems. The following subsections report on this study’s participants, design, and results.

7.1. Participants

This study had eight participants including two females and six males aged 23 to 31 (Mean=26.62, SD=2.87). The partic-
ipants are actively working as software developers either in companies or as freelancers.

The participants have between 3 and 11 (Mean=5.75, SD=2.76) years of experience in the software industry. Their ex-
perience collectively included the development of various types of software applications including business applications
and mobile games.

7.2. Design of the study

Each participant completed this study in around one and a half hours. Before the study, we introduced the participants
to EUD-MARS and explained the role of software developers in creating robot profiles and API configurations. We also
gave them an example of how to define profiles and configurations.

After this preparation, we asked the participants to use both the XML-based language and the visual tool to define the
DrivingRobot profile of the LegoNXTShooterBotAPI shown in Fig. 8 and Fig. 9 respectively. We asked the participants to
provide feedback on what they thought were the main strengths and the points that we can improve.

7.3. Results

The participants specified the following points as the main strengths of the language and tool.
Base profiles (refer to Fig. 8) are very useful. Since robots could share many features, using base profiles saves time

and improves maintainability by allowing a robot profile to inherit the features of another. Base profiles allow software
developers to think about abstraction when preparing robot profiles, the way they do when designing and programming
software applications.

The ability to browse robot profiles and API configurations visually in the project explorer offers familiarity
when compared to traditional software development tools. This makes it possible to easily search and browse items. Fur-
thermore, the visual style of the tree views, for example in the project explorer, is appealing and makes it easier to locate
and select items. We should note that the style we adopted for this tool’s UI follows the material design guidelines, and
uses the Material Design In XAML Toolkit [105]. This gives the tree nodes a wide and flat visual appearance.

The ability to load API data from existing libraries reduces the manual work needed for identifying the classes
and functions in these libraries by using a separate tool.

The ability to generate robot profiles and API configurations from API data is very useful even if some manual
adjustments might be required. The initially generated profiles and configurations are a good starting point. Performing
some manual adjustments on the generated data is easier than starting from scratch. Similarly, the feature that enables
automatic mapping of robot profiles to API configurations saves time, even if it only finds partial matches.

In addition to highlighting the main strengths, the participants provided insights on points for improvement. What fol-
lows is an explanation of these points and suggestions on ways for potentially addressing them.

It would be useful to have a mixed-mode view that combines the visual trees and the XML-based representa-
tion. Generating the XML representation of the profiles and configurations from the visual tree saves time. Nonetheless,
being able to swap between the two views would make this tool more powerful. This suggested feature is similar to what
IDEs support in UI development. For example, IDEs usually combine a visual UI design tool with a UI development
markup language such as HTML. In the robot-profile-composition tool, a mixed-mode view would allow software devel-
opers to use the XML mode when they become more familiar with it. The participants considered this especially useful for
operations that they deem simpler to do using the markup language. One example of these operations is duplicating a
robot profile and performing minor changes on the copy. Software developers would be able to duplicate a profile by cop-
ying and pasting its XML representation, and then they can quickly move through the copy to perform the necessary
changes. The software developers’ tool is already able to transform the visual representation to its XML counterpart. Fur-
thermore, the end-user development tool is already able to interpret the XML representation of the robot profiles and
APIs, to enable the definition and execution of robotics programs. Combining both interpreters in the software develop-

26 P. A. Akiki et al. / Science of Computer Programming

ers’ tool would realize this suggested feature through a form of bidirectional transformation between the visual represen-
tation and its XML counterpart.

It would be useful to have a validation feature that allows software developers to check if their API configurations
still conform to updated versions of API libraries. It would also be useful if the tool reflects or suggests API library
updates automatically. Considering that API libraries evolve, having these two features would save software developers
the time required to manually check and apply updates. These features would also make the process of updating API con-
figurations less error-prone. The tool is already able to load API definitions from their respective libraries. We just need to
implement a comparison mechanism between the latest API definitions and the previously loaded ones. The automated
comparison mechanism could involve prompts for obtaining the software developers’ decisions on operations such as
deleting and renaming items (e.g., classes and methods).

It would be useful if the tool could generate source code skeletons from the robot profiles and API configurations,
even though this is not its primary purpose. Typically, software developers would have one or more API libraries and
then they would define robot profiles and configurations to conform to these APIs. However, there are cases where the
software developers are starting a new API library project. In such cases, it would be useful if they could use this tool to
define the structure of the API, and then have the tool generate the skeleton of the API classes and methods in a target
programming language. This is not the primary intention of this tool. However, it is possible to realize this feature by
implementing an extensible code generation engine. This engine could incorporate transformation rules to convert robot
profiles to different target programming languages. By doing so, the tool would allow software developers to use both
API-first and profile-first approaches. Some IDEs support a similar feature for code and databases, whereby software de-

a) Education b) Gender c) Has Programmed Before

c) Age

Mean=14.65, Median=16, SD=2.99, Minimum=8, Maximum=17

d) Programming Languages Used e) Programming Skills (self-assessed) f) Computer Skills (self-assessed)

Fig. 15. Participants’ education, gender, age, knowledge of programming, and computer skills.

 P. A. Akiki et al. / Science of Computer Programming 27

velopers can write the code first and generate a database based on the classes or design a database first and generate the
code from it.

It would be useful to have the ability to refer to copies of the API library files (assemblies) from the project
explorer. Software developers would be able to publish the copies directly with the robot profiles and API configurations
for the end-user software-development tool to use. This also prevents changes to the external copies of API libraries from
having any effect, until the software developers decide to upgrade to a new API version. This is simply realizable by copy-
ing the API libraries into the local directory of a robot profile project and having the tool refer to these copies rather than
the original ones.

7.4. Threat to validity

This study involved a small number of participants. This could limit the generalizability of the results. However, these
participants provided rich feedback from their perspectives as software developers, and they gave insights that showed
the strengths and the points that we can improve. In this study, we primarily aimed to collect feedback from software
developers on EUD-MARS after they have used it in a development scenario. We consider the results insightful and in-
formative for creating a future version of the tool, which we can assess further in another study.

 Evaluation with end-users

Since EUD-MARS mainly targets end-users, we conducted a study to assess how end-users perceive this approach’s
understandability, ease of use, and overall desirability. The evaluation based on these three metrics shows the ability of
EUD-MARS to empower end-users to program model-driven adaptive robotics software systems. Assessing the under-
standability of the programs is important to see if EUD-MARS was able to provide end-users with a less technical and
understandable representation of its model-driven and adaptation capabilities. Assessing the ease-of-use shows how easi-
ly end-users can use the visual language to develop programs that incorporate these capabilities. The assessment of desir-
ability provides end-users with the means of expressing their opinion of the entire system using a set of descriptive key-
words. The following subsections present the participants’ background information, and the study’s design and results.

8.1. Participants

We conducted this study with 20 participants. We recruited ten of these participants during a technology-related
community outreach event that occurred within the National Museum of Computing at Bletchley Park in the United
Kingdom. The event lasted for two days during which the participants volunteered to take part in this study and other
related computer programming activities. We recruited five of the participants during a programming workshop for
school students that took place at Notre Dame University–Louaize in Lebanon. We recruited the remaining five partici-
pants through personal contacts in Lebanon.

We should note that we conducted the study in English. The British participants are all native speakers. The Lebanese
participants are proficient in English because they either are learning all their school courses in English or at least are
studying English as one of two foreign languages that Lebanese schools commonly teach (the other language is French).

Fig. 16. Example settings from the study.

28 P. A. Akiki et al. / Science of Computer Programming

The participants consisted of children and teenagers, whose ages ranged between 8 and 17 years. They are primary
school (25%) and high school (75%) students (Fig. 15a). The participants were 20% female and 80% male (Fig. 15b). Con-
cerning their programming knowledge, 80% of the participants stated that they have previously done some form of pro-
gramming (Fig. 15c). The participants who have previously programmed indicated that they have worked with (at least
tried) one or more of the programming languages shown in Fig. 15d. They also did a self-assessment of their program-
ming skills and computer skills, as shown in Fig. 15e and Fig. 15f respectively. Most of the participants had programming
skills that ranged from poor to excellent according to their self-assessment. Four participants said that they had no prior
programming experience. However, as we previously mentioned, we recruited most of the participants during technolo-
gy-related community outreach events. These events included general introductory programming lessons and activities in
Python and C#. Hence, the participants who had no prior programming experience gained a general understanding of
programming and some experience during the events, before participating in the study. Only one of the four participants
who did not have prior programming experience did not attend the technology-related events, because he was one of the
five participants recruited through personal contacts. The events also helped the participants who had previously pro-
grammed to emphasize their knowledge of programming. We should also note here that considering the participants’ age
range, their knowledge of programming comes mostly from introductory school sessions or workshops that target school
students. Therefore, we can say that the participants have some knowledge of programming, but they are not professional
programmers.

Some existing research work targets young learners [106,107], while others target both children and less technical
adults [108]. We should note that EUD-MARS does not only target children and teenagers; it targets any end-users who
are not professional programmers but are interested in programming robots. The participants of this study are children

Question 1 (Action Sequences)

Assume that you have the
following robots:

What do you think the following program does?

Humanoid

Drone

How easy do you think this program is to understand?

Very Hard ⃝ ⃝ ⃝ ⃝ ⃝ Very Easy

Question 2 (Adaptation)

Assume that you have the
following robot:

What do you think the following program does?

Rover

How easy do you think this program is to understand?

Very Hard ⃝ ⃝ ⃝ ⃝ ⃝ Very Easy

Fig. 17. Questions related to the understandability of EUD-MARS programs.

 P. A. Akiki et al. / Science of Computer Programming 29

and teenagers who are not professional programmers but have an interest in programming. Hence, we consider these
participants to be a representative end-user group.

8.2. Design of the study

First, we asked the participants to provide some background information about themselves. Then, we gave an introduc-
tory explanation of EUD-MARS. Finally, the participants carried out tasks related to EUD-MARS and answered feedback
questions. We present in Fig. 16 two examples of this study’s settings.

The introductory explanation that we gave to the participants included example programs developed using EUD-
MARS. These programs introduced the participants to the way EUD-MARS works and the visual elements that are availa-
ble in its toolbox. This explanation also helped those with little or no programming experience to understand more about
visual programming. The introduction took on average 15 minutes per participant. Afterward, each participant took on
average 20 minutes to complete the rest of this study that involved carrying out tasks and providing feedback. We did not

Involved Robots

Lego Mindstorms (Driver Bot) iRobot Create (Vacuum Cleaner)
 labeled Roomba because the name is more common

Question 1 (Action Sequences)

Scenario Expected Output

Add a virtual action sequence and name it “Dance”.

The Roomba’s dance moves are as follows:
 Spin
 Wait for 10 seconds
 Stop

The Driver Bot’s dance moves are as follows:
 Move forward
 Wait for 2 seconds
 Move backward
 Wait for 2 seconds
 Stop

How easy do you think this scenario is to program?

Very Hard ⃝ ⃝ ⃝ ⃝ ⃝ Very Easy

Question 2 (Adaptation)

Scenario Expected Output

Add a “When” event.

Assume that when the Driver Bot’s sensor “Dis-
tance from Object” provides a value that is < 40, you
want to perform the following:

 Stop the Driver Bot
 Spin the Roomba
 Prevent the Driver Bot from Moving Forward

How easy do you think this scenario is to program?

Very Hard ⃝ ⃝ ⃝ ⃝ ⃝ Very Easy

Fig. 18. Questions related to programming with EUD-MARS.

30 P. A. Akiki et al. / Science of Computer Programming

set a maximum time that a participant can spend on a task. Since the participants were not familiar with EUD-MARS, the
introductory explanation assisted them in completing the given tasks.

The first part of this study involved asking the participants to read two visual programs and explain what they think
each of these programs does, as shown in Fig. 21. One of these programs demonstrated different types of action sequences
and calls to action sequences (Fig. 21-Question 1), while the other program demonstrated adaptive behavior based on a
change in the context of use (Fig. 21-Question 2). The participants rated, on a five-point scale, how easy it was to under-
stand the two visual programs.

The second part of this study involved asking the participants to develop two programs using the visual programming
environment of EUD-MARS, as shown in Fig. 22. The first program involved using different types of action sequences and
actions to implement a dance functionality on two types of robots (Fig. 22-Question 1). The second program involved
adapting a robot’s behavior when its proximity from nearby objects is less than a given value (Fig. 22-Question 2). Upon
detecting the proximity change, another robot is also prompted to execute an action; this is a form of communication
among robots (refer to Section 3.5). The participants also rated, on a five-point scale, how easy it was to develop the two
programs.

We recorded the participants’ explanations and the programs that they developed to determine to what extent they
were able to answer the questions. Finally, we asked the participants to choose three product reaction cards (PRCs) [109]
that they thought best described EUD-MARS. We gave the participants a subset of 10 positive and 10 negative PRCs from the
original 118 terms. The positive PRCs were as follows: appealing, desirable, easy-to-use, effective, exciting, friendly, fun,
straightforward, useful, and valuable. The negative PRCs were as follows: boring, confusing, difficult, hard-to-use, intimi-
dating, rigid, too-technical, unapproachable, unattractive, and undesirable. We gave the participants the choice of selecting
PRCs that are positive, negative, or a mixture of both.

a) The correctness of explanations given by participants b) Ratings of understandability given by participants
(1=Very Hard and 5=Very Easy)

Question 1 Question 2 Question 1 Question 2

Mean=4, Median=4, SD=0.64

Mean=3.9, Median=4, SD=0.91

Fig. 19. Results of the end-user evaluation: correctness of explanations of programs and ratings of understandability.

a) The correctness of programs developed by participants b) Ratings of ease of programming given by participants
(1=Very Hard and 5=Very Easy)

Question 1 Question 2 Question 1 Question 2

Mean=4.68, Median=5, SD=0.58

Mean=4.36, Median=4, SD=0.59

Fig. 20. Results of the end-user evaluation: correctness of developed programs and ratings of ease of programming.

 P. A. Akiki et al. / Science of Computer Programming 31

8.3. Results: Understandability, ease of programming, and overall desirability

This study showed positive results in terms of EUD-MARS’ understandability, ease of use for programming, and over-
all desirability to people who are not professional programmers.

As Fig. 19a shows, the majority of the participants were able to explain fully the two EUD-MARS programs that we
presented to them. The first (Fig. 17-Question 1) and the second (Fig. 17-Question 2) programs were explained in full by
85% and 70% of the participants respectively. The remaining participants provided a partial explanation of what the pro-
grams do. We decided on whether an answer fully or partially explains a program by comparing the participants’ expla-
nations to ones that we wrote and discussed before conducting the study. Our explanations covered all the concepts in the
programs that we presented to the participants. Upon examining the participants’ answers, we discussed whether their
explanations also covered these concepts and therefore fully explained the programs, or partially explained the programs
due to concepts missing from the explanation. What follows are examples of the most commonly missed concepts that led
us to classify some explanations as partial. In question one, the participants who gave a partial explanation mostly missed
the calls to the “Perform Greeting” action sequence with a humanoid and a drone as parameters. On the other hand, the
participants who partially explained question two mostly missed the purpose of the “Prevent” section under the “Prevent
Execution” block. As Fig. 19b shows, the average rating that the participants gave on the understandability of the two
programs was 4/5, indicating that the programs are easy to understand.

 Concerning the programming tasks (Fig. 18-Questions 1 and 2), as Fig. 20a shows, 80% of the participants were able to
complete fully both tasks. We also decided on whether a participant’s program fully answers a question, by comparing it
to a program that we developed beforehand and assessing whether it fulfills the given requirements. The participants rat-
ed the ease of programming of both tasks to be on average higher than 4/5 (Fig. 20b). This indicates that they found the
tasks to be easy to accomplish using EUD-MARS.

 We can say that the rate of successful answers that the participants gave in the explanation and programming parts
complies with their perception of EUD-MARS’ understandability and ease of programming. We can see that in both the
explanation and programming parts, the participants rated the adaptation questions as slightly less understandable and
slightly harder to program. Nonetheless, the overall averages of both parts were comparable and positive.

The PRCs selected by the participants to describe the overall desirability of EUD-MARS were all positive as shown in
Fig. 21. The top three most selected PRCs are as follows: easy to use, useful, and straightforward. These PRCs provide a
positive indication of the participants’ perceived usability and utility (usefulness) of EUD-MARS.

8.4. Results: Observations and participant suggestions

 One of the things we observed during the study is that when composing an event (When) with a condition on a con-
text element, e.g., a robot’s distance from an object, several participants attached the context element block directly to the
event block. They needed to attach a condition block to the event block, and then add the context element to the condition
block. The EUD-MARS programming tool does not allow its end-user to attached incompatible blocks together, and it

Fig. 21. Product reaction cards selected by the participants to describe EUD-MARS.

32 P. A. Akiki et al. / Science of Computer Programming

provides warning messages to explain the reason. Nonetheless, to clarify things further for the end-users, we aim to add a
faded placeholder (i.e., shadow block) next to the event block to indicate that a condition block is required there. We per-
ceive the placeholder to be a solution because during the study the participants understood the meaning of the faded
placeholder blocks that existed next to the action blocks.

 The participants were overall keen on entering correct parameter values for the selected robot actions, even when the
instructions did not specify what values to enter. For example, the instructions indicated a time value when instructing
the participants to add a time delay (Wait) block. However, the instructions did not provide explicit values for the speed
parameter of the MoveForward and MoveBackward actions. Yet, the majority of the participants noticed this parameter
and were proactive in asking what range of values they can use. Afterward, they chose a speed that they considered ap-
propriate. This indicates that the parameters are obvious enough for the end-users.

Although the participants had no prior experience with the EUD-MARS programming tool, many of them were able to
work with it quite comfortably. For example, they navigated quickly through the toolbox. They copied, pasted, and delet-
ed blocks when required, and even managed to call the action sequences that they added. This ease of work is likely due
to the prior experience of some participants had with Scratch. This experience likely gave the participants an element of
familiarity with the style of the blocks and the overall mode of interaction with the tool. This is one of the advantages of
choosing a common visual notation, namely interlocking blocks, to develop the visual language of EUD-MARS.

In the first programming question, one participant added the required actual action sequences for the driver bot and the
vacuum cleaner under two separate virtual action sequences. He used the word “Dance”, which was given in the instruc-
tions, to name both virtual action sequences. We aim to help end-users avoid this issue in the future by adding validation
that would suggest merging virtual action sequences that have the same name.

 One participant suggested adding the word “if” next to the combo box that shows the list of robots in actual action se-
quences. He mentioned that seeing “if”, e.g., “if Driver Bot”, makes the purpose of the actual action sequence more under-
standable. Adding “if” as a label could be considered in the future, but it would require evaluation to check if end-users
will confuse it with the standard “if” condition. Another participant suggested adding text next to events (When) to clarify
that a sensor block is required. We will address this issue by adding a faded placeholder next to events.

8.5. Threats to validity

The understandability and programming questions that we gave the participants cover part of the functionality sup-
ported by EUD-MARS. Nonetheless, these questions cover both major parts of EUD-MARS that involve supporting the
development of adaptive software and the use of model-driven development as an underlying approach, while hiding the
complexity from end-users. We aimed to obtain an indication about the understandability of EUD-MARS’ visual language,
whether this language and its supporting tool are easy to use for programming and EUD-MARS’ overall desirability. The
positive results that the study yielded indicate that end-users will appreciate the remaining functionality since it follows
the same paradigm. If more learning time is dedicated, e.g., through lectures or video tutorials, we assume that end-users
would be able to use EUD-MARS for developing programs that are more complex.

The study involved 20 participants; this could limit the generalizability of the results. However, the sample of partici-
pants was diverse in terms of the participants’ ages (8 to 17 years), programming skills (none to excellent), and nationali-
ties (British and Lebanese).

 Conclusions and future work

This paper presented an approach called End-User Development of Model-driven Adaptive Robotics Software (EUD-
MARS). This approach allows end-users, who are not professional programmers, to develop model-driven adaptive robot-
ics software without requiring advanced technical skills. Model-driven development enables programs to run on a variety
of robot types and hardware platforms. Adaptation capabilities enable robots to change their behavior based on changes
in the context of use (user, platform, and environment).

In the EUD-MARS approach, software developers are responsible for preparing robot profiles that enable end-users to
program a set of robots. The preparation of these profiles involves specifying what actions and sensors robots support and
configuring code-based APIs to connect them to EUD-MARS. We provided software developers with an XML-based lan-
guage and a visual tool, which they can use to prepare robot profiles and API configurations. We created a visual lan-
guage, based on Blockly, which enables end-users to develop robotics software without requiring a significant amount of
technical knowledge. We developed a tool that enables end-users to develop robotics programs using our visual language
and to execute their programs on robots.

We evaluated EUD-MARS from a technical perspective by using it to control a variety of robots. These robots included
a driver bot and a shooter bot that we developed using Lego Mindstorms, a vacuum cleaner (iRobot Create), a humanoid
(NAO), and a drone (Parrot Bebop 2). We also assessed the choice of interlocking blocks (Blockly) as a visual notation
based on the recommendations of the cognitive dimensions framework.

 P. A. Akiki et al. / Science of Computer Programming 33

We conducted a study with software developers to elicit their feedback on the XML-based language and visual tool
that we created for defining robot profiles and API configurations. We asked the participants to use both the language and
the tool to define a robot profile and API mappings. Then, we asked them to provide feedback on what they thought were
the main strengths and the points that we can improve. The participants stated several perceived points of strength in our
approach, and they offered insights for improvement that could inform future work.

We conducted a study with end-users to assess mainly their ability to explain and develop EUD-MARS programs. The
participants were primary school and high school students from the United Kingdom and Lebanon. We asked the partici-
pants to explain EUD-MARS programs and to use the tool that we created to develop programs. We also asked them to
answer questions about their perception of EUD-MARS’ understandability, ease of use for programming, and overall de-
sirability. The study yielded positive results concerning the participants’ ability to explain and develop EUD-MARS pro-
grams, and their overall perception of our approach.

As mentioned in the paper, we noted observations and participant suggestions that we could use for future improve-
ments. Furthermore, in the future, it would be interesting to research conflict prevention in real-world situations when
two or more robots are collaborating to fulfill a task. We could also conduct further research on how to use the capabili-
ties of heterogeneous robots to solve a complex task collaboratively. It will also be interesting to extend EUD-MARS’ end-
user programming tool by adding an advanced three-dimensional simulator that could support a wide variety of robots.

Fig. 22. Efficiency evaluation: comparing between runtime and compiled code execution times.

Fig. 23. Efficiency evaluation: comparing direct calls from Python and C# calling Python when no C# API is available (e.g., the case of
the NAO robot).

34 P. A. Akiki et al. / Science of Computer Programming

Acknowledgments

The authors would like to thank the financial support by the European Research Council (ERC), EU Horizon 2020, and
the Engineering and Physical Sciences Research Council (EPSRC) that enabled the collaboration. We also acknowledge the
eSTEeM project at the School of Computing and Communications, Open University, and the National Museum of Compu-
ting at Bletchley Park for supporting the engagement with schoolchildren in the United Kingdom.

Appendix

Efficiency evaluation

As Fig. 1 shows, an EUD-MARS interpreter reads the configurations and programs and executes the instructions on the
designated robots at runtime. Hence, this evaluation involved comparing the efficiency of interpreted programs (runtime
execution) with that of compiled code. This evaluation also involved testing calls made from the EUD-MARS program
interpreter (written in C#) to an API written in another language (Python). The evaluation was carried out on a computer
that has an Intel Core i5 2.50 GHz CPU, 12 GB of RAM, and is running Windows 7.

We developed the interpreter using C# and invoked API calls at runtime using reflection. The latter allows the retrieval
of meta-data from assemblies and types. It also supports the dynamic creation of instances of objects and the invocation
of methods. The efficiency evaluation checks if the use of runtime interpretation and execution would have any signifi-
cant performance implications. The chart presented in Fig. 22 compares operations that we executed on different robots in
two ways. One way involved executing the operations from a compiled C# program, which made function calls to each
robot’s API. Another way involved executing the operations from the EUD-MARS environment, which interpreted the
visual program and transformed it into API calls at runtime. Here, we should note that the numbers include the time to
complete the whole operation, e.g., physical movement by the robot, and not just the time for sending the command. The
operations include both the execution of actions and reading from sensors. We can see that the efficiency of the EUD-
MARS programs is almost the same as that of the compiled programs. This indicates that the dynamic interpretation and
execution of the visual programs do not degrade performance.

As mentioned in Section 6.1, we developed a C# API that is capable of calling Python code to command the NAO robot.
We compared the efficiency of calling the Python code from C# and calling it directly without C#. The chart presented in
Fig. 23 compares two sets of operations that we executed twice, once from a C# API that calls external Python functions
and another time by calling the Python functions directly. We can see that calling the external Python functions from the
C# API does not add any significant overhead. Here, we should note that software developers could typically call Python
from C# using the Iron Python language, which makes Python programs compatible with the .NET framework. They can
also call the Python process from C# and pass as a parameter the path of the code file that they wish to execute. Although
the first method is easier to use, the second method allows software developers to call recent versions of Python that Iron
Python might not support. Hence, we used the second method to build the NAO robot API for EUD-MARS. If in the future
we use web-services for API calls (refer to Section 3.7), the overhead would just be the HTTP call.

References

[1] S.J. Kim, Y. Jeong, S. Park, K. Ryu, G. Oh, A Survey of Drone use for Entertainment and AVR (Augmented and Virtual Reality),
in: T. Jung, M.C. tom Dieck (Eds.), Augment. Real. Virtual Real. Empower. Hum. Place Bus., Springer International Publishing,
Cham, 2018: pp. 339–352. https://doi.org/10.1007/978-3-319-64027-3_23.

[2] Microsoft, Power Apps, (2019). https://docs.microsoft.com/en-us/powerapps/powerapps-overview.
[3] M. Burnett, T. Kulesza, End-User Development in Internet of Things: We the People, in: Proc. Workshop End User Dev. Inter-

net Things Era, ACM, Seoul, Korea, 2015: pp. 81–86.
[4] M. Burnett, C. Cook, G. Rothermel, End-User Software Engineering, Commun. ACM. 47 (2004) 53–58.
[5] A.J. Ko, R. Abraham, M.M. Burnett, B.A. Myers, Guest editors’ introduction: End-user software engineering, IEEE Softw. 26

(2009) 16–17.
[6] Blockly, (n.d.). https://developers.google.com/blockly (accessed October 28, 2019).
[7] NAO, (n.d.). https://www.softbankrobotics.com/emea/en/robots/nao (accessed October 28, 2019).
[8] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, others,

The State of the Art in End-User Software Engineering, ACM Comput. Surv. CSUR. 43 (2011) 21:1-21:44.
[9] H. Lieberman, F. Paternò, M. Klann, V. Wulf, End-User Development: An Emerging Paradigm, in: End User Dev., Springer,

2006: pp. 1–8.
[10] G. Biggs, B. Macdonald, A Survey of Robot Programming Systems, in: Proc. Australas. Conf. Robot. Autom. CSIRO, 2003: p. 27.
[11] A. Elkady, T. Sobh, Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography, J. Robot. 2012

(2012) 15.
[12] N. Mohamed, J. Al-Jaroodi, I. Jawhar, A review of middleware for networked robots, Int. J. Comput. Sci. Netw. Secur. 9 (2009)

139–148.

 P. A. Akiki et al. / Science of Computer Programming 35

[13] M. Namoshe, N.S. Tlale, C.M. Kumile, G. Bright, Open middleware for robotics, in: 2008 15th Int. Conf. Mechatron. Mach. Vis.
Pract., 2008: pp. 189–194. https://doi.org/10.1109/MMVIP.2008.4749531.

[14] R. France, B. Rumpe, Model-Driven Development of Complex Software: A Research Roadmap, in: Proc. Workshop Future
Softw. Eng., IEEE, Minneapolis, USA, 2007: pp. 37–54. https://doi.org/10.1109/FOSE.2007.14.

[15] A.R. da Silva, Model-driven engineering: A survey supported by the unified conceptual model, Comput. Lang. Syst. Struct. 43
(2015) 139–155. https://doi.org/10.1016/j.cl.2015.06.001.

[16] P.A. Akiki, A.K. Bandara, Y. Yu, Adaptive Model-Driven User Interface Development Systems, ACM Comput. Surv. 47 (2014)
64:1-64:33.

[17] M.C. Huebscher, J.A. McCann, A Survey of Autonomic Computing—Degrees, Models, and Applications, ACM Comput. Surv. 40
(2008) 7:1–7:28. https://doi.org/10.1145/1380584.1380585.

[18] M. Salehie, L. Tahvildari, Self-Adaptive Software: Landscape and Research Challenges, ACM Trans. Auton. Adapt. Syst. 4
(2009) 1–42. https://doi.org/10.1145/1516533.1516538.

[19] B. Athreya, F. Bahmani, A. Diede, C. Scaffidi, End-user programmers on the loose: A study of programming on the phone for
the phone, in: Vis. Lang. Hum.-Centric Comput. VLHCC 2012 IEEE Symp. On, IEEE, 2012: pp. 75–82.

[20] W.P. Dann, S. Cooper, R. Pausch, Learning to Program with Alice, Pearson, 2011.
[21] D.D. Hoang, H.-Y. Paik, A.H.H. Ngu, Spreadsheet as a Generic Purpose Mashup Development Environment, in: P.P. Maglio, M.

Weske, J. Yang, M. Fantinato (Eds.), Serv.-Oriented Comput. 8th Int. Conf. ICSOC 2010 San Franc. CA USA Dec. 7-10 2010
Proc., Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 273–287. http://dx.doi.org/10.1007/978-3-642-17358-5_19.

[22] J. Lin, J. Wong, J. Nichols, A. Cypher, T.A. Lau, End-user Programming of Mashups with Vegemite, in: Proc. 14th Int. Conf.
Intell. User Interfaces, ACM, New York, NY, USA, 2009: pp. 97–106. https://doi.org/10.1145/1502650.1502667.

[23] J. Jackson, Microsoft robotics studio: A technical introduction, IEEE Robot. Autom. Mag. 14 (2007) 82–87.
[24] M. Bell, J. FLOYD, J.F. Kelly, LEGO MINDSTORMS EV3, Springer, 2017.
[25] J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The Scratch Programming Language and Environment, ACM

Trans. Comput. Educ. TOCE. 10 (2010) 16:1-16:15.
[26] Edbot, (n.d.). http://ed.bot/edbot (accessed October 22, 2019).
[27] RoboBlockly, (n.d.). http://roboblockly.ucdavis.edu (accessed October 22, 2019).
[28] D. Weintrop, D.C. Shepherd, P. Francis, D. Franklin, Blockly goes to work: Block-based programming for industrial robots, in:

Blocks Workshop BB 2017 IEEE, IEEE, 2017: pp. 29–36.
[29] R. Bischoff, A. Kazi, M. Seyfarth, The MORPHA style guide for icon-based programming, in: Proc. 11th IEEE Int. Workshop

Robot Hum. Interact. Commun., 2002: pp. 482–487. https://doi.org/10.1109/ROMAN.2002.1045668.
[30] H. Qichen, D. Li, Ardublock, 2014. https://sourceforge.net/projects/ardublock.
[31] Modkit LLC., Modkit, (n.d.). http://www.modkit.com (accessed January 30, 2016).
[32] G. Kortuem, A.K. Bandara, N. Smith, M. Richards, M. Petre, Educating the Internet-of-Things generation, Computer. 46 (2013)

53–61.
[33] IBM Emerging Technology Services, Node-RED, (2013). https://nodered.org/about (accessed October 22, 2019).
[34] P. van Allen, NETLab Toolkit, (2003). http://www.netlabtoolkit.org (accessed October 23, 2019).
[35] J. Huang, M. Cakmak, Code3: A System for End-to-End Programming of Mobile Manipulator Robots for Novices and Experts,

in: 2017 12th ACMIEEE Int. Conf. Hum.-Robot Interact. HRI, 2017: pp. 453–462.
[36] S. Alexandrova, M. Cakmak, K. Hsiao, L. Takayama, Robot Programming by Demonstration with Interactive Action Visualiza-

tions, in: Robot. Sci. Syst., 2014: pp. 48–56.
[37] J. Huang, T. Lau, M. Cakmak, Design and evaluation of a rapid programming system for service robots, in: 2016 11th ACMIEEE

Int. Conf. Hum.-Robot Interact. HRI, 2016: pp. 295–302. https://doi.org/10.1109/HRI.2016.7451765.
[38] E. Pot, J. Monceaux, R. Gelin, B. Maisonnier, Choregraphe: a graphical tool for humanoid robot programming, in: RO-MAN

2009 - 18th IEEE Int. Symp. Robot Hum. Interact. Commun., 2009: pp. 46–51. https://doi.org/10.1109/ROMAN.2009.5326209.
[39] A. Sauppé, B. Mutlu, Design Patterns for Exploring and Prototyping Human-robot Interactions, in: Proc. 32Nd Annu. ACM

Conf. Hum. Factors Comput. Syst., ACM, New York, NY, USA, 2014: pp. 1439–1448. https://doi.org/10.1145/2556288.2557057.
[40] T. Lourens, TiViPE - Tino’s Visual Programming Environment, in: Proc. 28th Annu. Int. Comput. Softw. Appl. Conf. 2004

COMPSAC 2004, 2004: pp. 10–15 vol.1. https://doi.org/10.1109/CMPSAC.2004.1342799.
[41] T. Lourens, E. Barakova, User-Friendly Robot Environment for Creation of Social Scenarios, in: J.M. Ferrández, J.R. Álvarez

Sánchez, F. de la Paz, F.J. Toledo (Eds.), Found. Nat. Artif. Comput., Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp.
212–221.

[42] M. Stenmark, M. Haage, E.A. Topp, Simplified Programming of Re-usable Skills on a Safe Industrial Robot: Prototype and Eval-
uation, in: Proc. 2017 ACMIEEE Int. Conf. Hum.-Robot Interact., ACM, New York, NY, USA, 2017: pp. 463–472.
https://doi.org/10.1145/2909824.3020227.

[43] ROBOTC, (n.d.). http://www.robotc.net (accessed October 22, 2019).
[44] D.D. Hils, Visual languages and computing survey: Data flow visual programming languages, J. Vis. Lang. Comput. 3 (1992) 69–

101. https://doi.org/10.1016/1045-926X(92)90034-J.
[45] S. Alexandrova, Z. Tatlock, M. Cakmak, RoboFlow: A flow-based visual programming language for mobile manipulation tasks,

in: 2015 IEEE Int. Conf. Robot. Autom. ICRA, 2015: pp. 5537–5544. https://doi.org/10.1109/ICRA.2015.7139973.
[46] D. Glas, S. Satake, T. Kanda, N. Hagita, An interaction design framework for social robots, in: Robot. Sci. Syst., 2012: p. 89.
[47] D.F. Glas, T. Kanda, H. Ishiguro, Human-robot interaction design using Interaction Composer eight years of lessons learned, in:

2016 11th ACMIEEE Int. Conf. Hum.-Robot Interact. HRI, 2016: pp. 303–310. https://doi.org/10.1109/HRI.2016.7451766.
[48] N. Arne, H. Nico, W. Dennis, W. Sebastian, A survey on domain-specific modeling and languages in robotics, (2016).
[49] OMG Robotics Domain Task Force, (n.d.). https://www.omg.org/robotics (accessed October 22, 2019).
[50] X. Blanc, J. Delatour, T. Ziadi, Benefits of the MDE approach for the development of embedded and robotic systems, in: Proc.

2nd Natl. Workshop “Control Archit. Robots Models Exec. Distrib. Control Archit. CAR, 2007.

36 P. A. Akiki et al. / Science of Computer Programming

[51] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar, L. Gherardi, D. Brugali, The BRICS component model:
a model-based development paradigm for complex robotics software systems, in: Proc. 28th Annu. ACM Symp. Appl. Comput.,
ACM, 2013: pp. 1758–1764.

[52] D.S. Kolovos, R.F. Paige, F.A. Polack, The epsilon transformation language, in: Int. Conf. Theory Pract. Model Transform.,
Springer, 2008: pp. 46–60.

[53] Eclipse Modeling Framework, (n.d.). http://www.eclipse.org/modeling/emf (accessed October 22, 2019).
[54] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, M. Ziane, Robotml, a domain-specific language to design, simulate and deploy ro-

botic applications, in: Int. Conf. Simul. Model. Program. Auton. Robots, Springer, 2012: pp. 149–160.
[55] C. Schlegel, A. Steck, D. Brugali, A. Knoll, Design abstraction and processes in robotics: From code-driven to model-driven

engineering, in: Int. Conf. Simul. Model. Program. Auton. Robots, Springer, 2010: pp. 324–335.
[56] C. Schlegel, A. Steck, A. Lotz, Robotic software systems: From code-driven to model-driven software development, in: Robot.

Syst.-Appl. Control Program., InTech, 2012.
[57] A. Diego, V.-C. Cristina, O. Francisco, P. Juan, Á. Bárbara, V3cmm: A 3-view component meta-model for model-driven robotic

software development, J. Softw. Eng. Robot. 1 (2010) 3–17.
[58] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation tool, Sci. Comput. Program. 72 (2008) 31–39.
[59] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: eclipse modeling framework, Pearson Education, 2008.
[60] RobMoSys, (n.d.). https://robmosys.eu (accessed May 20, 2020).
[61] R. Heckel, M. Lohmann, Towards Model-Driven Testing, Electron. Notes Theor. Comput. Sci. 82 (2003) 33–43.

https://doi.org/10.1016/S1571-0661(04)81023-5.
[62] M. Mussa, S. Ouchani, W.A. Sammane, A. Hamou-Lhadj, A Survey of Model-Driven Testing Techniques, in: 2009 Ninth Int.

Conf. Qual. Softw., 2009: pp. 167–172. https://doi.org/10.1109/QSIC.2009.30.
[63] P.A. Akiki, CHAIN: Developing model-driven contextual help for adaptive user interfaces, J. Syst. Softw. 135 (2018) 165–190.

https://doi.org/10.1016/j.jss.2017.10.017.
[64] P.A. Akiki, A.K. Bandara, Y. Yu, Engineering Adaptive Model-Driven User Interfaces, IEEE Trans. Softw. Eng. 42 (2016) 1118–

1147. https://doi.org/10.1109/TSE.2016.2553035.
[65] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, A. Wortmann, A New Skill Based Robot Programming Language Using UML/P

Statecharts, in: 2013 IEEE Int. Conf. Robot. Autom., 2013: pp. 461–466.
[66] K. Adam, A. Butting, R. Heim, O. Kautz, B. Rumpe, A. Wortmann, Model-Driven Separation of Concerns for Service Robotics,

in: Proc. Int. Workshop Domain-Specif. Model., Association for Computing Machinery, New York, NY, USA, 2016: pp. 22–27.
https://doi.org/10.1145/3023147.3023151.

[67] D. Bozhinoski, D.D. Ruscio, I. Malavolta, P. Pelliccione, M. Tivoli, FLYAQ: Enabling Non-expert Users to Specify and Generate
Missions of Autonomous Multicopters, in: 2015 30th IEEEACM Int. Conf. Autom. Softw. Eng. ASE, 2015: pp. 801–806.

[68] D. Di Ruscio, I. Malavolta, P. Pelliccione, Engineering a Platform for Mission Planning of Autonomous and Resilient Quad-
rotors, in: A. Gorbenko, A. Romanovsky, V. Kharchenko (Eds.), Softw. Eng. Resilient Syst., Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013: pp. 33–47.

[69] D. Di Ruscio, I. Malavolta, P. Pelliccione, A Family of Domain-Specific Languages for Specifying Civilian Missions of Multi-
Robot Systems., in: MORSE STAF, 2014: pp. 16–29.

[70] F. Ciccozzi, D.D. Ruscio, I. Malavolta, P. Pelliccione, Adopting MDE for Specifying and Executing Civilian Missions of Mobile
Multi-Robot Systems, IEEE Access. 4 (2016) 6451–6466.

[71] IBM, An Architectural Blueprint for Autonomic Computing, (2006). http://bit.ly/MapeKLoop (accessed April 5, 2013).
[72] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: Architecture-Based Self-Adaptation with Reusable

Infrastructure, Computer. 37 (2004) 46–54. https://doi.org/10.1109/MC.2004.175.
[73] J. Kramer, J. Magee, Self-Managed Systems: an Architectural Challenge, in: Proc. Workshop Future Softw. Eng., IEEE, Minne-

apolis, USA, 2007: pp. 259–268. https://doi.org/10.1109/FOSE.2007.19.
[74] D. Bozhinoski, A. Bucchiarone, I. Malavolta, A. Marconi, P. Pelliccione, Leveraging Collective Run-Time Adaptation for UAV-

Based Systems, in: 2016 42th Euromicro Conf. Softw. Eng. Adv. Appl. SEAA, 2016: pp. 214–221.
[75] S. Dragule, B. Meyers, P. Pelliccione, A generated property specification language for resilient multirobot missions, in: Int.

Workshop Softw. Eng. Resilient Syst., Springer, 2017: pp. 45–61.
[76] IFTTT (If This Then That), (n.d.). https://ifttt.com (accessed May 20, 2020).
[77] D. Brugali, P. Scandurra, Component-based robotic engineering (part i)[tutorial], IEEE Robot. Autom. Mag. 16 (2009) 84–96.
[78] D. Brugali, A. Shakhimardanov, Component-based robotic engineering (part ii), IEEE Robot. Autom. Mag. 17 (2010) 100–112.
[79] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng, ROS: an open-source Robot Operating Sys-

tem, in: ICRA Workshop Open Source Softw., Kobe, Japan, 2009: p. 5.
[80] Robot Operating System (ROS), Robot Oper. Syst. ROS. (n.d.). https://www.ros.org (accessed October 13, 2019).
[81] G. Bardaro, A. Semprebon, M. Matteucci, A Use Case in Model-based Robot Development Using AADL and ROS, in: Proc. 1st

Int. Workshop Robot. Softw. Eng., ACM, New York, NY, USA, 2018: pp. 9–16. https://doi.org/10.1145/3196558.3196560.
[82] Y. Hua, S. Zander, M. Bordignon, B. Hein, From AutomationML to ROS: A model-driven approach for software engineering of

industrial robotics using ontological reasoning, in: 2016 IEEE 21st Int. Conf. Emerg. Technol. Fact. Autom. ETFA, 2016: pp. 1–8.
https://doi.org/10.1109/ETFA.2016.7733579.

[83] M. Wenger, W. Eisenmenger, G. Neugschwandtner, B. Schneider, A. Zoitl, A model based engineering tool for ROS component
compositioning, configuration and generation of deployment information, in: 2016 IEEE 21st Int. Conf. Emerg. Technol. Fact.
Autom. ETFA, 2016: pp. 1–8. https://doi.org/10.1109/ETFA.2016.7733559.

[84] C. Jang, S.-I. Lee, S.-W. Jung, B. Song, R. Kim, S. Kim, C.-H. Lee, OPRoS: A New Component-Based Robot Software Platform,
ETRI J. 32 (2010) 646–656.

 P. A. Akiki et al. / Science of Computer Programming 37

[85] B. Song, S. Jung, C. Jang, S. Kim, An introduction to robot component model for opros (open platform for robotic services), in:
Proc. Int. Conf. Simul. Model. Program. Auton. Robots Workshop, 2008: pp. 592–603.

[86] H. Utz, S. Sablatnog, S. Enderle, G. Kraetzschmar, Miro - middleware for mobile robot applications, IEEE Trans. Robot. Autom.
18 (2002) 493–497. https://doi.org/10.1109/TRA.2002.802930.

[87] H. Bruyninckx, Open robot control software: the OROCOS project, in: Robot. Autom. 2001 Proc. 2001 ICRA IEEE Int. Conf. On,
IEEE, 2001: pp. 2523–2528.

[88] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, Woo-Keun Yoon, RT-middleware: distributed component middleware for RT (ro-
bot technology), in: 2005 IEEERSJ Int. Conf. Intell. Robots Syst., 2005: pp. 3933–3938. https://doi.org/10.1109/IROS.2005.1545521.

[89] H. Chishiro, Y. Fujita, A. Takeda, Y. Kojima, K. Funaoka, S. Kato, N. Yamasaki, Extended RT-Component Framework for RT-
Middleware, in: 2009 IEEE Int. Symp. ObjectComponentService-Oriented Real-Time Distrib. Comput., 2009: pp. 161–168.
https://doi.org/10.1109/ISORC.2009.40.

[90] A. Makarenko, A. Brooks, T. Kaupp, Orca: Components for robotics, in: Int. Conf. Intell. Robots Syst. IROS, 2006: pp. 163–168.
[91] T.H. Collett, B.A. MacDonald, B.P. Gerkey, Player 2.0: Toward a practical robot programming framework, in: Proc. Australas.

Conf. Robot. Autom. ACRA 2005, Citeseer Citeseer, 2005: p. 145.
[92] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, J. Vanderdonckt, A Unifying Reference Framework for Multi-

Target User Interfaces, Interact. Comput. 15 (2003) 289–308. https://doi.org/10.1016/S0953-5438(03)00010-9.
[93] A. Bennaceur, T.T. Tun, A.K. Bandara, Y. Yu, B. Nuseibeh, Feature-driven Mediator Synthesis: Supporting Collaborative Securi-

ty in the Internet of Things, ACM Trans. Cyber-Phys. Syst. 2 (2018) 21.
[94] E. Pasternak, R. Fenichel, A.N. Marshall, Tips for Creating a Block language with Blockly, in: Blocks Workshop BB 2017 IEEE,

IEEE, 2017: pp. 21–24.
[95] S. Yamashita, M. Tsunoda, T. Yokogawa, Visual Programming Language for Model Checkers Based on Google Blockly, in: Int.

Conf. Prod.-Focus. Softw. Process Improv., Springer, 2017: pp. 597–601.
[96] A. Marron, G. Weiss, G. Wiener, A decentralized approach for programming interactive applications with javascript and

blockly, in: Proc. 2nd Ed. Program. Syst. Lang. Appl. Based Actors Agents Decentralized Control Abstr., ACM, 2012: pp. 59–70.
[97] P. Bottoni, M. Ceriani, Linked Data Queries as Jigsaw Puzzles: a Visual Interface for SPARQL Based on Blockly Library, in:

Proc. 11th Biannu. Conf. Ital. SIGCHI Chapter, ACM, 2015: pp. 86–89.
[98] J. Danado, F. Paternò, Puzzle: A mobile application development environment using a jigsaw metaphor, J. Vis. Lang. Comput.

25 (2014) 297–315.
[99] J. Humble, A. Crabtree, T. Hemmings, K.-P. Åkesson, B. Koleva, T. Rodden, P. Hansson, “Playing with the Bits” User-

Configuration of Ubiquitous Domestic Environments, in: A.K. Dey, A. Schmidt, J.F. McCarthy (Eds.), UbiComp 2003 Ubiquitous
Comput. 5th Int. Conf. Seattle WA USA Oct. 12-15 2003 Proc., Springer Berlin Heidelberg, Berlin, Heidelberg, 2003: pp. 256–
263. http://dx.doi.org/10.1007/978-3-540-39653-6_20.

[100] P.A. Akiki, A.K. Bandara, Y. Yu, Visual Simple Transformations: Empowering End-Users to Wire Internet of Things Objects,
ACM Trans Comput-Hum Interact. 24 (2017) 10:1–10:43. https://doi.org/10.1145/3057857.

[101] T.R.G. Green, M. Petre, Usability Analysis of Visual Programming Environments: A ‘Cognitive Dimensions’ Framework, J. Vis.
Lang. Comput. 7 (1996) 131–174.

[102] Lego Mindstorms, (n.d.). https://www.lego.com/en-gb/mindstorms (accessed October 28, 2019).
[103] iRobot Create, (n.d.). https://www.irobot.com/about-irobot/stem/create-2.aspx (accessed October 28, 2019).
[104] Parrot Bebop 2, (n.d.). https://www.parrot.com/uk/drones/parrot-bebop-2 (accessed October 28, 2019).
[105] Material Design In XAML Toolkit, (n.d.). http://materialdesigninxaml.net (accessed August 6, 2019).
[106] M. Seraj, C.S. Große, S. Autexier, R. Drechsler, Smart Homes Programming: Development and Evaluation of an Educational

Programming Application for Young Learners, in: Proc. 18th ACM Int. Conf. Interact. Des. Child., ACM, New York, NY, USA,
2019: pp. 146–152. https://doi.org/10.1145/3311927.3323157.

[107] A. Zimmermann-Niefield, M. Turner, B. Murphy, S.K. Kane, R.B. Shapiro, Youth Learning Machine Learning Through Building
Models of Athletic Moves, in: Proc. 18th ACM Int. Conf. Interact. Des. Child., ACM, New York, NY, USA, 2019: pp. 121–132.
https://doi.org/10.1145/3311927.3323139.

[108] A. Millner, E. Baafi, Modkit: Blending and Extending Approachable Platforms for Creating Computer Programs and Interactive
Objects, in: Proc. 10th Int. Conf. Interact. Des. Child., ACM, New York, NY, USA, 2011: pp. 250–253.
https://doi.org/10.1145/1999030.1999074.

[109] J. Benedek, T. Miner, Measuring Desirability: New Methods for Evaluating Desirability in a Usability Lab Setting, Proc. Usabil-
ity Prof. Assoc. 2003 (2002) 8–12.

[110] K. Anis, ROS As a Service: Web Services for Robot Operating System, J. Softw. Eng. Robot. 6 (2015) 1–14.
[111] F.L. Keppmann, M. Maleshkova, A. Harth, Building REST APIs for the Robot Operating System-Mapping Concepts, Interaction.,

in: SALAD ESWC, 2015: pp. 10–19.

