114 research outputs found

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    The ALICE Inner Tracking System (ITS) consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two pixel, two drift and two strip layers. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 μm in some cases (pixels). The sources of alignment information are the survey measurements and the reconstructed tracks from cosmic rays and from proton–proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10 5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnetic field switched off

    Measuring beauty production in Pb-Pb collisions at the LHC via single electrons in ALICE

    Full text link
    We present the expected ALICE performance for the measurement of the p_t-differential cross section of electrons from beauty decays in central Pb-Pb collisions at the LHC.Comment: 4 pages, 2 figures, proceeding of poster presentation at "Quark Matter 2005

    Lineage-specific T-cell responses to cancer mucosa antigen oppose systemic metastases without mucosal inflammatory disease.

    Get PDF
    Cancer mucosa antigens are emerging as a new category of self-antigens expressed normally in immunologically privileged mucosal compartments and universally by their derivative tumors. These antigens leverage the established immunologic partitioning of systemic and mucosal compartments, limiting tolerance opposing systemic antitumor efficacy. An unresolved issue surrounding self-antigens as immunotherapeutic targets is autoimmunity following systemic immunization. In the context of cancer mucosa antigens, immune effectors to self-antigens risk amplifying mucosal inflammatory disease promoting carcinogenesis. Here, we examined the relationship between immunotherapy for systemic colon cancer metastases targeting the intestinal cancer mucosa antigen guanylyl cyclase C (GCC) and its effect on inflammatory bowel disease and carcinogenesis in mice. Immunization with GCC-expressing viral vectors opposed nascent tumor growth in mouse models of pulmonary metastasis, reflecting systemic lineage-specific tolerance characterized by CD8(+), but not CD4(+), T-cell or antibody responses. Responses protecting against systemic metastases spared intestinal epithelium from autoimmunity, and systemic GCC immunity did not amplify chemically induced inflammatory bowel disease. Moreover, GCC immunization failed to promote intestinal carcinogenesis induced by germ-line mutations or chronic inflammation. The established role of CD8(+) T cells in antitumor efficacy, but CD4(+) T cells in autoimmunity, suggests that lineage-specific responses to GCC are particularly advantageous to protect against systemic metastases without mucosal inflammation. These observations support the utility of GCC-targeted immunotherapy in patients at risk for systemic metastases, including those with inflammatory bowel disease, hereditary colorectal cancer syndromes, and sporadic colorectal cancer

    The ALICE Silicon Pixel Detector: readiness for the first proton beam

    Get PDF
    The Silicon Pixel Detector (SPD) is the innermost element of the ALICE Inner Tracking System (ITS). The SPD consists of two barrel layers of hybrid silicon pixels surrounding the beam pipe with a total of 48 10^7 pixel cells. The SPD features a very low material budget, a 99.9% efficient bidimensional digital response, a 12 micron spatial precision in the bending plane (rf ) and a prompt signal as input to the L0 trigger. The SPD commissioning in the ALICE experimental area is well advanced and it includes calibration runs with internal pulse and cosmic ray runs. In this contribution the commissioning of the SPD is reviewed and the first results from runs with cosmic rays and circulating proton beams are presented

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Atypical ductal hyperplasia is a multipotent precursor of breast carcinoma

    Get PDF
    The current model for breast cancer progression proposes independent “low‐grade (LG) like” and “high‐grade (HG) like” pathways but lacks a known precursor to HG cancer. We applied low coverage whole genome sequencing to atypical ductal hyperplasia (ADH) with and without carcinoma to shed light on breast cancer progression. 14/20 isolated ADH cases harboured at least one copy number alteration (CNA), but had fewer aberrations than LG or HG ductal carcinoma in situ (DCIS). ADH carried more HG‐like CNA than LG DCIS (eg. 8q gain). Correspondingly, 64% (7/11) of ADH cases with synchronous HG carcinoma were clonally related, similar to LG carcinoma (67%, 6/9). This study represents a significant shift in our understanding of breast cancer progression, with ADH as a common precursor lesion to the independent “low‐grade like” and “high‐grade like” pathways. These data suggest that ADH can be a precursor of HG breast cancer and that LG and HG carcinomas can evolve from a similar ancestor lesion. We propose that although LG DCIS may be committed to a LG molecular pathway, ADH may remain multipotent, progressing to either LG or HG carcinoma. This multipotent nature suggests that some ADH could be more clinically significant than LG DCIS, requiring biomarkers for personalising management

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Transverse momentum spectra of charged particles in proton-proton collisions at s=900\sqrt{s} = 900 GeV with ALICE at the LHC

    Get PDF
    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at s=900\sqrt{s} = 900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (η<0.8)(|\eta|<0.8) over the transverse momentum range 0.15<pT<100.15<p_{\rm T}<10 GeV/cc. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for η<0.8|\eta|<0.8 is <pT>INEL=0.483±0.001\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc and \left_{\rm NSD}=0.489\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc, respectively. The data exhibit a slightly larger <pT>\left<p_{\rm T}\right> than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.Comment: 20 pages, 8 figures, 2 tables, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/390
    corecore