222 research outputs found
Immortalized mouse caput epididymal epithelial (mECap18) cell line recapitulates the in-vivo environment
OnlinePublResiding between the testes and the vas deferens, the epididymis is a highly convoluted tubule whose unique luminal microenvironment is crucial for the functional maturation of spermatozoa. This microenvironment is created by the combined secretory and resorptive activity of the lining epididymal epithelium, including the release of extracellular vesicles (epididymosomes), which encapsulate fertility modulating proteins and a myriad of small non-coding RNAs (sncRNAs) that are destined for delivery to recipient sperm cells. To enable investigation of this intercellular communication nexus, we have previously developed an immortalized mouse caput epididymal epithelial cell line (mECap18). Here, we describe the application of label-free mass spectrometry to characterize the mECap18 cell proteome and compare this to the proteome of native mouse caput epididymal epithelial cells. We report the identification of 5,313 mECap18 proteins, as many as 75.8% of which were also identified in caput epithelial cells wherein they mapped to broadly similar protein classification groupings. Furthermore, key pathways associated with protein synthesis (e.g., EIF2 signaling) and cellular protection in the male reproductive tract (e.g., sirtuin signaling) were enriched in both proteomes. This comparison supports the utility of the mECap18 cell line as a tractable in-vitro model for studying caput epididymal epithelial cell function.Jess E. Mulhall, Natalie A. Trigg, Ilana R. Bernstein, Amanda L. Anderson, Heather C. Murray, Petra Sipilä, Tessa Lord, John E. Schjenken, Brett Nixon, David A. Skerrett-Byrn
Effective Lagrangian Approach to the Theory of Eta Photoproduction in the Region
We investigate eta photoproduction in the resonance region
within the effective Lagrangian approach (ELA), wherein leading contributions
to the amplitude at the tree level are taken into account. These include the
nucleon Born terms and the leading -channel vector meson exchanges as the
non-resonant pieces. In addition, we consider five resonance contributions in
the - and - channel; besides the dominant , these are:
and . The amplitudes for the
and the photoproduction near threshold have significant
differences, even as they share common contributions, such as those of the
nucleon Born terms. Among these differences, the contribution to the
photoproduction of the -channel excitation of the is the most
significant. We find the off-shell properties of the spin-3/2 resonances to be
important in determining the background contributions. Fitting our effective
amplitude to the available data base allows us to extract the quantity
, characteristic of the
photoexcitation of the resonance and its decay into the
-nucleon channel, of interest to precise tests of hadron models. At the
photon point, we determine it to be from
the old data base, and from a
combination of old data base and new Bates data. We obtain the helicity
amplitude for to be from the old data base, and from the combination of the old data base and new Bates
data, compared with the results of the analysis of pion photoproduction
yielding , in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in
Phys. Rev.
A Robust Parser-Interpreter for Jazz Chord Sequences
Hierarchical structure similar to that associated with prosody and syntax in language can be identified in the rhythmic and harmonic progressions that underlie Western tonal music. Analysing such musical struc-ture resembles natural language parsing: it requires the derivation of an underlying interpretation from an un-structured sequence of highly ambiguous elements— in the case of music, the notes. The task here is not merely to decide whether the sequence is grammati-cal, but rather to decide which among a large number of analyses it has. An analysis of this sort is a part of the cognitive processing performed by listeners familiar with a musical idiom, whether musically trained or not. Our focus is on the analysis of the structure of ex-pectations and resolutions created by harmonic progres-sions. Building on previous work, we define a theory of tonal harmonic progression, which plays a role analo-gous to semantics in language. Our parser uses a formal grammar of jazz chord sequences, of a kind widely used for natural language processing (NLP), to map music, in the form of chord sequences used by performers, onto a representation of the structured relationships between chords. It uses statistical modelling techniques used for wide-coverage parsing in NLP to make practical pars-ing feasible in the face of considerable ambiguity in the grammar. Using machine learning over a small corpus of jazz chord sequences annotated with harmonic anal-yses, we show that grammar-based musical interpreta-tion using simple statistical parsing models is more ac-curate than a baseline HMM. The experiment demon-strates that statistical techniques adapted from NLP can be profitably applied to the analysis of harmonic struc-ture
Dynamic protein methylation in chromatin biology
Post-translational modification of chromatin is emerging as an increasingly important regulator of chromosomal processes. In particular, histone lysine and arginine methylation play important roles in regulating transcription, maintaining genomic integrity, and contributing to epigenetic memory. Recently, the use of new approaches to analyse histone methylation, the generation of genetic model systems, and the ability to interrogate genome wide histone modification profiles has aided in defining how histone methylation contributes to these processes. Here we focus on the recent advances in our understanding of the histone methylation system and examine how dynamic histone methylation contributes to normal cellular function in mammals
Measurement of the cross section of high transverse momentum Z→bb̄ production in proton–proton collisions at √s = 8 TeV with the ATLAS detector
This Letter reports the observation of a high transverse momentum Z→bb̄ signal in proton–proton collisions at √s=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fb−¹. The Z→bb̄ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be
σZ→bb¯fid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb,
in good agreement with next-to-leading-order theoretical predictions
De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome
Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals where it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologs. Using RNA-sequencing, we show how 5’ splice site usage is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 bp region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide
Study of the lineshape of the chi(c1) (3872) state
A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
Measurement of the CKM angle in and decays with
A measurement of -violating observables is performed using the decays
and , where the meson is
reconstructed in one of the self-conjugate three-body final states and (commonly denoted ). The decays are analysed in bins of the -decay phase space, leading
to a measurement that is independent of the modelling of the -decay
amplitude. The observables are interpreted in terms of the CKM angle .
Using a data sample corresponding to an integrated luminosity of
collected in proton-proton collisions at centre-of-mass
energies of , , and with the LHCb experiment,
is measured to be . The hadronic
parameters , , , and ,
which are the ratios and strong-phase differences of the suppressed and
favoured decays, are also reported
- …