37 research outputs found

    Estudi dels efectes del liti sobre el metabolisme dels fosfolípids i l'alliberació de senyals químics en cultius d'astròcits

    Get PDF
    Descripció del recurs: el 26 de març de 2010El desenvolupament de noves teràpies per als trastorns bipolars, caracteritzats per l'alternança d'episodis de depressió i d'eufòria exacerbada, es veu dificultat pel desconeixement de l'etiologia de la malaltia i del mecanisme d'acció dels fàrmacs que estabilitzen l'estat d'ànim del pacient, com el valproat, la carbamazepina, la lamotrigina, i el liti. En aquest sentit, una possibilitat que ha estat poc explorada és que les cèl·lules diana d'aquests fàrmacs siguin els astròcits, un tipus de glia que darrerament està emergent com a element actiu en els processos de transmissió sinàptica, fet que ens ha portat a estudiar els efectes del liti en cultius d'astròcits. Hem caracteritzat l'increment que produeix el liti en la velocitat de síntesi de fosfatidilcolina (PC) en astròcits, que ja apareix amb el tractament agut amb liti, però és especialment significatiu a partir de les 24 hores de tractament. El liti potencia la ruta de Kennedy per a la síntesi de PC, un efecte que es veu parcialment revertit per l'addició d'inositol, indicant que la inhibició de la IMPasa per part del liti hi estaria implicada. Els efectes del liti no es limiten a la PC sinó que es produeix una alteració general del metabolisme lipídic dels astròcits. El liti inhibeix la síntesi de fosfatidilinositol i de fosfatidiletanolamina, un efecte que es dóna de manera similar amb valproat o carbamazepina que, de manera oposada al liti, també provoquen una forta inhibició en la síntesi de PC. Paral·lelament, el tractament crònic amb liti sembla reduïr la síntesi de novo d'àcids grassos i de colesterol. Globalment, els efectes observats ens fan pensar que en incrementar la síntesi de PC el liti podria produir una reducció en els nivells de diacilglicerol cel·lulars, fet que podria estar implicat amb el mecanisme terapèutic d'aquest ió. Si la diana terapèutica del liti es troba en els astròcits, és probable que actuï a nivell de les molècules que aquests alliberen per tal de modular la transmissió sinàptica. En aquest sentit hem comprovat que el tractament amb liti, a dosis lleugerament superiors a les terapèutiques, incrementa l'alliberació de TNF-, òxid nítric, i prostaglandina E2 (PGE2) en cultius d'astròcits estimulats amb lipopolisacàrid bacterià (LPS). Sorprenentment en emprar una dosi de liti inferior, dins del rang terapèutic del fàrmac, s'observa una reducció en l'alliberació de PGE2, un efecte reproduït pel valproat, la carbamazepina i la lamotrigina. L'efecte dual del liti en funció de la concentració aplicada, es deu a una reducció en la producció d'àcid araquidònic en resposta a senyals de Ca2+ citosòlic, paral·lela a un increment en la inducció de la ciclooxigenasa-2 (COX-2) en astròcits estimulats amb LPS. Aquest fet podria estar relacionat amb l'estreta finestra terapèutica d'aquest fàmac, i contribueix a relacionar els astròcits amb el mecanisme d'acció dels estabilitzadors de l'estat d'ànim.Bipolar disorder is a common disease characterized by an alternating pattern of depression and mania episodes. Bipolar patients are treated with the mood stabilizing drugs, like lithium, valproate and carbamazepine, however the action mechanism of these drugs remains unknown. As most of the studies on this issue have been focused in neurons, we decided to analyze the effects of lithium in cultured astrocytes, a type of glial cells that are emerging as active elements in the regulation of synaptic transmission. We have characterized the increase on phosphatidylcholine (PC) synthesis induced by lithium in cultured astrocytes, an effect that appears with the acute treatment and is enhanced after 24 hours of treatment with lithium. Lithium potentiates the Kennedy pathway for the synthesis of PC, in an IMPase (inositol monophosphatase) inhibition dependent manner. Lithium effects are not limited to PC but it produces a broad alteration on astrocytic lipid metabolism. Lithium inhibits phosphatidylinositol and phosfatidylethanolamine synthesis, an effect also induced by the treatment with valproate or carbamazepine, which don't stimulate PC synthesis as lithium but inhibit it. On the other hand, chronic lithium treatment reduces fatty acids and cholesterol "de novo" synthesis. Overall, we hypothesized that lithium, increasing PC synthesis, induces a reduction on cellular diacylglycerol levels, which in turn could be related with the therapeutic mechanism of this ion

    Lipid droplet biogenesis induced by stress involves triacylglycerol synthesis that depends on group VIA phospholipase A2

    Get PDF
    This work investigates the metabolic origin of triacylglycerol (TAG) formed during lipid droplet (LD) biogenesis induced by stress. Cytotoxic inhibitors of fatty acid synthase induced TAG synthesis and LD biogenesis in CHO-K1 cells, in the absence of external sources of fatty acids. TAG synthesis was required for LD biogenesis and was sensitive to inhibition and down-regulation of the expression of group VIA phospholipase A2 (iPLA2-VIA). Induction of stress with acidic pH, C2-ceramide, tunicamycin, or deprivation of glucose also stimulated TAG synthesis and LD formation in a manner dependent on iPLA2-VIA. Overexpression of the enzyme enhanced TAG synthesis from endogenous fatty acids and LD occurrence. During stress, LD biogenesis but not TAG synthesis required phosphorylation and activation of group IVA PLA2 (cPLA2α). The results demonstrate that iPLA2-VIA provides fatty acids for TAG synthesis while cPLA2α allows LD biogenesis. LD biogenesis during stress may be a survival strategy, recycling structural phospholipids into energy-generating substrates

    Group IVA phospholipase A2 is necessary for the biogenesis of lipid droplets

    Get PDF
    Lipid droplets (LD) are organelles present in all cell types, consisting of a hydrophobic core of triacylglycerols and cholesteryl esters, surrounded by a monolayer of phospholipids and cholesterol. This work shows that LD biogenesis induced by serum, by long-chain fatty acids, or the combination of both in CHO-K1 cells was prevented by phospholipase A2 inhibitors with a pharmacological profile consistent with the implication of group IVA cytosolic phospholipase A2 (cPLA2α). Knocking down cPLA2α expression with short interfering RNA was similar to pharmacological inhibition in terms of enzyme activity and LD biogenesis. A Chinese hamster ovary cell clone stably expressing an enhanced green fluorescent protein-cPLA2α fusion protein (EGFP-cPLA2) displayed higher LD occurrence under basal conditions and upon LD induction. Induction of LD took place with concurrent phosphorylation of cPLA2α at Ser505. Transfection of a S505A mutant cPLA2α showed that phosphorylation at Ser505 is key for enzyme activity and LD formation. cPLA2α contribution to LD biogenesis was not because of the generation of arachidonic acid, nor was it related to neutral lipid synthesis. cPLA2α inhibition in cells induced to form LD resulted in the appearance of tubulo-vesicular profiles of the smooth endoplasmic reticulum, compatible with a role of cPLA2α in the formation of nascent LD from the endoplasmic reticulum

    FAIM-L regulation of XIAP degradation modulates Synaptic Long-Term Depression and Axon Degeneration

    Get PDF
    Caspases have recently emerged as key regulators of axonal pruning and degeneration and of long-term depression (LTD), a long-lasting form of synaptic plasticity. However, the mechanism underlying these functions remains unclear. In this context, XIAP has been shown to modulate these processes. The neuron-specific form of FAIM protein (FAIM-L) is a death receptor antagonist that stabilizes XIAP protein levels, thus preventing death receptor-induced neuronal apoptosis. Here we show that FAIM-L modulates synaptic transmission, prevents chemical-LTD induction in hippocampal neurons, and thwarts axon degeneration after nerve growth factor (NGF) withdrawal. Additionally, we demonstrate that the participation of FAIM-L in these two processes is dependent on its capacity to stabilize XIAP protein levels. Our data reveal FAIM-L as a regulator of axonal degeneration and synaptic plasticity

    The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

    Get PDF
    Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat

    Dynamic Changes in Lipid Droplet-Associated Proteins in the "Browning" of White Adipose Tissues

    No full text
    The morphological and functional differences between lipid droplets (LDs) in brown (BAT) and white (WAT) adipose tissues will largely be determined by their associated proteins. Analysing mRNA expression in mice fat depots we have found that most LD protein genes are expressed at higher levels in BAT, with the greatest differences observed for Cidea and Plin5. Prolonged cold exposure, which induces the appearance of brown-like adipocytes in mice WAT depots, was accompanied with the potentiation of the lipolytic machinery, with changes in ATGL, CGI-58 and G0S2 gene expression. However the major change detected in WAT was the enhancement of Cidea mRNA. Together with the increase in Cidec, it indicates that LD enlargement through LD-LD transference of fat is an important process during WAT browning. To study the dynamics of this phenotypic change, we have applied 4D confocal microscopy in differentiated 3T3-L1 cells under sustained β-adrenergic stimulation. Under these conditions the cells experienced a LD remodelling cycle, with progressive reduction on the LD size by lipolysis, followed by the formation of new LDs, which were subjected to an enlargement process, likely to be CIDE-triggered, until the cell returned to the basal state. This transformation would be triggered by the activation of a thermogenic futile cycle of lipolysis/lipogenesis and could facilitate the molecular mechanism for the unilocular to multilocular transformation during WAT browning. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease

    PLEKHS1 drives PI3Ks and remodels pathway homeostasis in PTEN-null prostate

    Get PDF
    The PIP3/PI3K network is a central regulator of metabolism and is frequently activated in cancer, commonly by loss of the PIP3/PI(3,4)P2 phosphatase, PTEN. Despite huge research investment, the drivers of the PI3K network in normal tissues and how they adapt to overactivation are unclear. We find that in healthy mouse prostate PI3K activity is driven by RTK/IRS signaling and constrained by pathway feedback. In the absence of PTEN, the network is dramatically remodeled. A poorly understood YXXM- and PIP3/PI(3,4)P2-binding PH domain-containing adaptor, PLEKHS1, became the dominant activator and was required to sustain PIP3, AKT phosphorylation, and growth in PTEN-null prostate. This was because PLEKHS1 evaded pathway-feedback and experienced enhanced PI3K- and Src-family kinase-dependent phosphorylation of Y258XXM, eliciting PI3K activation. hPLEKHS1 mRNA and activating Y419 phosphorylation of hSrc correlated with PI3K pathway activity in human prostate cancers. We propose that in PTEN-null cells receptor-independent, Src-dependent tyrosine phosphorylation of PLEKHS1 creates positive feedback that escapes homeostasis, drives PIP3 signaling, and supports tumor progression

    Lysine Deacetylase (KDAC) Regulatory Pathways: an Alternative Approach to Selective Modulation

    Get PDF
    Protein lysine deacetylases (KDACs), including the classic Zn2+-dependent histone deacetylases (HDACs) and the nicotinamide adenine dinucleotide (NAD+)-requiring sirtuins, are enzymes that play critical roles in numerous biological processes, particularly the epigenetic regulation of global gene expression programs in response to internal and external cues. Dysregulation of KDACs is characteristic of several human diseases, including chronic metabolic, neurodegenerative, and cardiovascular diseases and many cancers. This has led to the development of KDAC modulators, two of which (HDAC inhibitors vorinostat and romidepsin) have been approved for the treatment of cutaneous T cell lymphoma. By their nature, existing KDAC modulators are relatively nonspecific, leading to pan-KDAC changes and undesired side effects. Given that KDACs are regulated at many levels, including transcriptional, post-translational, subcellular localization, and through their complexation with other proteins, it should be possible to affect specific KDAC activity through manipulation of endogenous signaling pathways. In this Minireview, we discuss our present knowledge of the cellular controls of KDAC activity and examples of their pharmacologic regulation
    corecore