419 research outputs found

    Scaling and Masking: A New Paradigm of Data Sampling for Image and Video Quality Assessment

    Full text link
    Quality assessment of images and videos emphasizes both local details and global semantics, whereas general data sampling methods (e.g., resizing, cropping or grid-based fragment) fail to catch them simultaneously. To address the deficiency, current approaches have to adopt multi-branch models and take as input the multi-resolution data, which burdens the model complexity. In this work, instead of stacking up models, a more elegant data sampling method (named as SAMA, scaling and masking) is explored, which compacts both the local and global content in a regular input size. The basic idea is to scale the data into a pyramid first, and reduce the pyramid into a regular data dimension with a masking strategy. Benefiting from the spatial and temporal redundancy in images and videos, the processed data maintains the multi-scale characteristics with a regular input size, thus can be processed by a single-branch model. We verify the sampling method in image and video quality assessment. Experiments show that our sampling method can improve the performance of current single-branch models significantly, and achieves competitive performance to the multi-branch models without extra model complexity. The source code will be available at https://github.com/Sissuire/SAMA.Comment: Accepted by AAAI2024. Code has been released at https://github.com/Sissuire/SAM

    Enhancement of the superconductivity and quantum metallic state in the thin film of superconducting Kagome metal KV3_3Sb5_5

    Full text link
    Recently V-based Kagome metal attracted intense attention due to the emergence of superconductivity in the low temperature. Here we report the fabrication and physical investigations of the high quality single-crystalline thin films of the Kagome metal KV3_3Sb5_5. For the sample with the thickness of about 15 nm, the temperature dependent resistance reveals a Berezinskii-Kosterlitz-Thouless (BKT) type behavior, indicating the presence of two-dimensional superconductivity. Compared with the bulk sample, the onset transition temperature TconsetT^{onset}_{c} and the out-of-plane upper critical field Hc2H_{c2} are enhanced by 15\% and more than 10 times respectively. Moreover, the zero-resistance state is destroyed by a magnetic field as low as 50 Oe. Meanwhile, the temperature-independent resistance is observed in a wide field region, which is the hallmark of quantum metallic state. Our results provide evidences for the existence of unconventional superconductivity in this material.Comment: 5 pages, 4 figure

    Emergence and Causality in Complex Systems: A Survey on Causal Emergence and Related Quantitative Studies

    Full text link
    Emergence and causality are two fundamental concepts for understanding complex systems. They are interconnected. On one hand, emergence refers to the phenomenon where macroscopic properties cannot be solely attributed to the cause of individual properties. On the other hand, causality can exhibit emergence, meaning that new causal laws may arise as we increase the level of abstraction. Causal emergence theory aims to bridge these two concepts and even employs measures of causality to quantify emergence. This paper provides a comprehensive review of recent advancements in quantitative theories and applications of causal emergence. Two key problems are addressed: quantifying causal emergence and identifying it in data. Addressing the latter requires the use of machine learning techniques, thus establishing a connection between causal emergence and artificial intelligence. We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning. Consequently, progress in any of these areas can benefit the others. Potential applications and future perspectives are also discussed in the final section of the review.Comment: 57 pages, 17 figures, 1 tabl

    Single photon detection performance of highly disordered NbTiN thin films

    Full text link
    We experimentally investigated the detection performance of highly disordered NbxTi1-xN based superconducting nanowire single photon detectors (SNSPDs). The dependence on the composition of the transition temperature Tc for NbxTi1-xN films show a dome-like behavior on the Nb content, with a maximal Tc at xNb~0.65 , and the Nb0.65Ti0.35N films also combine relatively large sheet resistance and intermediate residual resistivity ratio. Moreover, 60-nm-wide and 7-nm-thick Nb0.65Ti0.35N nanowires show a switching current as high as 14.5 uA, and saturated intrinsic detection efficiency with a plateau of more than 2 uA at 2.4 K. Finally, the corresponding SNSPDs on an alternative SiO2/Ta2O5 dielectric mirror showed a system detection efficiency of approximately 92% for 1550 nm photons, and the timing jitter is around 26 ps. Our results demonstrate that the highly disordered NbxTi1-xN films are promising for fabricating SNSPDs for near- and middle-infrared single photons with high detection efficiency and low timing jitter.Comment: 9 pages,5 figure

    Anomalous extensive landfast sea ice in the vicinity of Inexpressible Island, Antarctica

    Get PDF
    On 10 December 2017, a Chinese research vessel R/V Xuelong encountered an extensive area of landfast ice offshore Inexpressible Island (Antarctica) near the location where the fifth Chinese Antarctic research station is to be built. Using multi-source satellite images and weather data, we analyzed the ice conditions during the event season and reconstructed the development of landfast ice. Two stages in late September and early October were identified as contributing to the final ice extent. These two events are highly related to local- and large-scale weather conditions. Satellite images from 2003 to 2017 showed that four in fifteen years experienced severe landfast ice conditions, suggesting that it is not a rare phenomenon

    Biomechanical evaluation of a novel individualized zero-profile cage for anterior cervical discectomy and fusion: a finite element analysis

    Get PDF
    Introduction: Anterior cervical discectomy and fusion (ACDF) is a standard procedure for treating symptomatic cervical degenerative disease. The cage and plate constructs (CPCs) are widely employed in ACDF to maintain spinal stability and to provide immediate support. However, several instrument-related complications such as dysphagia, cage subsidence, and adjacent segment degeneration have been reported in the previous literature. This study aimed to design a novel individualized zero-profile (NIZP) cage and evaluate its potential to enhance the biomechanical performance between the instrument and the cervical spine.Methods: The intact finite element models of C3-C7 were constructed and validated. A NIZP cage was designed based on the anatomical parameters of the subject’s C5/6. The ACDF procedure was simulated and the CPCs and NIZP cage were implanted separately. The range of motion (ROM), intradiscal pressure (IDP), and peak von Mises stresses of annulus fibrosus were compared between the two surgical models after ACDF under four motion conditions. Additionally, the biomechanical performance of the CPCs and NIZP cage were evaluated.Results: Compared with the intact model, the ROM of the surgical segment was significantly decreased for both surgical models under four motion conditions. Additionally, there was an increase in IDP and peak von Mises stress of annulus fibrosus in the adjacent segment. The NIZP cage had a more subtle impact on postoperative IDP and peak von Mises stress of annulus fibrosus in adjacent segments compared to CPCs. Meanwhile, the peak von Mises stresses of the NIZP cage were reduced by 90.0–120.0 MPa, and the average von Mises stresses were reduced by 12.61–17.56 MPa under different motion conditions. Regarding the fixation screws, the peak von Mises stresses in the screws of the NIZP cage increased by 10.0–40.0 MPa and the average von Mises stresses increased by 2.37–10.10 MPa.Conclusion: The NIZP cage could effectively reconstruct spinal stability in ACDF procedure by finite element study. Compared with the CPCs, the NIZP cage had better biomechanical performance, with a lower stress distribution on the cage and a more moderate effect on the adjacent segmental discs. Therefore, the NIZP cage could prevent postoperative dysphagia as well as decrease the risk of subsidence and adjacent disc degeneration following ACDF. In addition, this study could serve as a valuable reference for the development of personalized instruments

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe
    • 

    corecore