95 research outputs found

    Place sequence learning for navigation

    Get PDF
    Abstract. A model of the hippocampus as a \cognitive map", inspired by the models of Burgess et al. (1994) and Jensen et al. (1996), is proposed. Simulations show that the resulting navigation behavior is as e-cient as the behavior exhibited by previous models. However, the architecture of the proposed model and the mechanisms governing the temporal characteristics of the neurons in the model are more realistic. In particular, the proposed model assigns distinct and speci c roles to the entorhinal cortex, the dentate gyrus and the hippocampal CA3 region. In essence, the dentate gyrus could act as a short-term memory that maintains the representation of a sequence of recently visited places. It could then force the corresponding CA3 place cells to re and to learn the spatial relationships between places through a Hebbian rule. This \topological representation " could then serve as a basis for predicting places ahead of the animal and drive \goal cells", i.e. cells that represent the direction to the goal, as proposed by Burgess et al.

    This Place Looks Familiar—How Navigators Distinguish Places with Ambiguous Landmark Objects When Learning Novel Routes

    Get PDF
    We present two experiments investigating how navigators deal with ambiguous landmark information when learning unfamiliar routes. In the experiments we presented landmark objects repeatedly along a route, which allowed us to manipulate how informative single landmarks were (1) about the navigators' location along the route and (2) about the action navigators had to take at that location. Experiment 1 demonstrated that reducing location informativeness alone did not affect route learning performance. While reducing both location and action informativeness led to decreased route learning performance, participants still performed well above chance level. This demonstrates that they used other information than just the identity of landmark objects at their current position to disambiguate their location along the route. To investigate how navigators distinguish between visually identical intersections, we systematically manipulated the identity of landmark objects and the actions required at preceding intersections in Experiment 2. Results suggest that the direction of turn at the preceding intersections was sufficient to tell two otherwise identical intersections apart. Together, results from Experiments 1 and 2 suggest that route knowledge is more complex than simple stimulus-response associations and that neighboring places are tightly linked. These links not only encompass sequence information but also directional information which is used to identify the correct direction of travel at subsequent locations, but can also be used for self-localization

    Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale.

    Get PDF
    Spatial navigation is a fascinating behavior that is essential for our everyday lives. It involves nearly all sensory systems, it requires numerous parallel computations, and it engages multiple memory systems. One of the key problems in this field pertains to the question of reference frames: spatial information such as direction or distance can be coded egocentrically-relative to an observer-or allocentrically-in a reference frame independent of the observer. While many studies have associated striatal and parietal circuits with egocentric coding and entorhinal/hippocampal circuits with allocentric coding, this strict dissociation is not in line with a growing body of experimental data. In this review, we discuss some of the problems that can arise when studying the neural mechanisms that are presumed to support different spatial reference frames. We argue that the scale of space in which a navigation task takes place plays a crucial role in determining the processes that are being recruited. This has important implications, particularly for the inferences that can be made from animal studies in small scale space about the neural mechanisms supporting human spatial navigation in large (environmental) spaces. Furthermore, we argue that many of the commonly used tasks to study spatial navigation and the underlying neuronal mechanisms involve different types of reference frames, which can complicate the interpretation of neurophysiological data

    Environmental stability modulates the role of path integration in human navigation

    Get PDF
    Path integration has long been thought of as an obligatory process that automatically updates one's position and orientation during navigation. This has led to the hypotheses that path integration serves as a back-up system in case landmark navigation fails, and a reference system that detects discrepant landmarks. Three experiments tested these hypotheses in humans, using a homing task with a catch-trial paradigm. Contrary to the back-up system hypothesis, when stable landmarks unexpectedly disappeared on catch trials, participants were completely disoriented, and only then began to rely on path integration in subsequent trials (Experiment 1). Contrary to the reference system hypothesis, when stable landmarks unexpectedly shifted by 115° on catch trials, participants failed to detect the shift and were completely captured by the landmarks (Experiment 2). Conversely, when chronically unstable landmarks unexpectedly remained in place on catch trials, participants failed to notice and continued to navigate by path integration (Experiment 3). In the latter two cases, they gradually sensed the instability (or stability) of landmarks on later catch trials. These results demonstrate that path integration does not automatically serve as a back-up system, and does not function as a reference system on individual sorties, although it may contribute to monitoring environmental stability over time. Rather than being automatic, the roles of path integration and landmark navigation are thus dynamically modulated by the environmental context

    The Effects of Attentional Engagement on Route Learning Performance in a Virtual Environment: An Aging Study

    Get PDF
    Route learning is a common navigation task affected by cognitive aging. Here we present a novel experimental paradigm to investigate whether age-related declines in executive control of attention contributes to route learning deficits. A young and an older participant group was repeatedly presented with a route through a virtual maze comprised of 12 decision points (DP) and non-decision points (non-DP). To investigate attentional engagement with the route learning task, participants had to respond to auditory probes at both DP and non-DP. Route knowledge was assessed by showing participants screenshots or landmarks from DPs and non-DPs and asking them to indicate the movement direction required to continue the route. Results demonstrate better performance for DPs than for non-DPs and slower responses to auditory probes at DPs compared to non-DPs. As expected we found slower route learning and slower responses to the auditory probes in the older participant group. Interestingly, differences in response times to the auditory probes between DPs and non-DPs can predict the success of route learning in both age groups and may explain slower knowledge acquisition in the older participant group

    The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation

    Get PDF
    BACKGROUND Despite decades of research on spatial memory, we know surprisingly little about how the brain guides navigation to goals. While some models argue that vectors are represented for navigational guidance, other models postulate that the future path is computed. Although the hippocampal formation has been implicated in processing spatial goal information, it remains unclear whether this region processes path- or vector-related information. RESULTS We report neuroimaging data collected from subjects navigating London's Soho district; these data reveal that both the path distance and the Euclidean distance to the goal are encoded by the medial temporal lobe during navigation. While activity in the posterior hippocampus was sensitive to the distance along the path, activity in the entorhinal cortex was correlated with the Euclidean distance component of a vector to the goal. During travel periods, posterior hippocampal activity increased as the path to the goal became longer, but at decision points, activity in this region increased as the path to the goal became closer and more direct. Importantly, sensitivity to the distance was abolished in these brain areas when travel was guided by external cues. CONCLUSIONS The results indicate that the hippocampal formation contains representations of both the Euclidean distance and the path distance to goals during navigation. These findings argue that the hippocampal formation houses a flexible guidance system that changes how it represents distance to the goal depending on the fluctuating demands of navigation

    Distinct Visual Working Memory Systems for View-Dependent and View-Invariant Representation

    Get PDF
    Background: How do people sustain a visual representation of the environment? Currently, many researchers argue that a single visual working memory system sustains non-spatial object information such as colors and shapes. However, previous studies tested visual working memory for two-dimensional objects only. In consequence, the nature of visual working memory for three-dimensional (3D) object representation remains unknown. Methodology/Principal Findings: Here, I show that when sustaining information about 3D objects, visual working memory clearly divides into two separate, specialized memory systems, rather than one system, as was previously thought. One memory system gradually accumulates sensory information, forming an increasingly precise view-dependent representation of the scene over the course of several seconds. A second memory system sustains view-invariant representations of 3D objects. The view-dependent memory system has a storage capacity of 3–4 representations and the view-invariant memory system has a storage capacity of 1–2 representations. These systems can operate independently from one another and do not compete for working memory storage resources. Conclusions/Significance: These results provide evidence that visual working memory sustains object information in two separate, specialized memory systems. One memory system sustains view-dependent representations of the scene, akin to the view-specific representations that guide place recognition during navigation in humans, rodents and insects. Th

    Generalisation, decision making, and embodiment effects in mental rotation: A neurorobotic architecture tested with a humanoid robot.

    Get PDF
    Mental rotation, a classic experimental paradigm of cognitive psychology, tests the capacity of humans to mentally rotate a seen object to decide if it matches a target object. In recent years, mental rotation has been investigated with brain imaging techniques to identify the brain areas involved. Mental rotation has also been investigated through the development of neural-network models, used to identify the specific mechanisms that underlie its process, and with neurorobotics models to investigate its embodied nature. Current models, however, have limited capacities to relate to neuro-scientific evidence, to generalise mental rotation to new objects, to suitably represent decision making mechanisms, and to allow the study of the effects of overt gestures on mental rotation. The work presented in this study overcomes these limitations by proposing a novel neurorobotic model that has a macro-architecture constrained by knowledge held on brain, encompasses a rather general mental rotation mechanism, and incorporates a biologically plausible decision making mechanism. The model was tested using the humanoid robot iCub in tasks requiring the robot to mentally rotate 2D geometrical images appearing on a computer screen. The results show that the robot gained an enhanced capacity to generalise mental rotation to new objects and to express the possible effects of overt movements of the wrist on mental rotation. The model also represents a further step in the identification of the embodied neural mechanisms that may underlie mental rotation in humans and might also give hints to enhance robots' planning capabilities

    Spatial Navigation Based on Novelty Mediated Autobiographical Memory

    Full text link
    Abstract. This paper presents a method for spatial navigation performed mainly on past experiences. The past experiences are remembered in their temporal context, i.e. as episodes of events. The learned episodes form an ac-tive autobiography that determines the future navigation behaviour. The epi-sodic and autobiographical memories are modelled to resemble the memory formation process that takes place in the rat hippocampus. The method im-plies naturally inferential reasoning in the robotic framework that may make it more flexible for navigation in unseen environments. The relation between novelty and life-long exploratory (latent) learning is shown to be important and therefore is incorporated into the learning process. As a result, active au-tobiography formation depends on latent learning while individual trials might be reward driven. The experimental results show that learning mediat-ed by novelty provides a flexible and efficient way to encode spatial informa-tion in its contextual relatedness and directionality. Therefore, performing a novel task is fast but solution is not optimal. In addition, learning becomes naturally a continuous process- encoding and retrieval phase have the same underlying mechanism, and thus do not need to be separated. Therefore, building a “life long ” autobiography is feasible.
    corecore