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Mental rotation, a classic experimental paradigm of cognitive psychology, tests the capacity of humans to
mentally rotate a seen object to decide if it matches a target object. In recent years, mental rotation has
been investigated with brain imaging techniques to identify the brain areas involved. Mental rotation has
also been investigated through the development of neural-network models, used to identify the specific
mechanisms that underlie its process, and with neurorobotics models to investigate its embodied nature.
Current models, however, have limited capacities to relate to neuro-scientific evidence, to generalise
mental rotation to new objects, to suitably represent decision making mechanisms, and to allow the
study of the effects of overt gestures on mental rotation. The work presented in this study overcomes
these limitations by proposing a novel neurorobotic model that has a macro-architecture constrained by
knowledge held on brain, encompasses a rather general mental rotation mechanism, and incorporates a
biologically plausible decision making mechanism. The model was tested using the humanoid robot iCub
in tasks requiring the robot to mentally rotate 2D geometrical images appearing on a computer screen.
The results show that the robot gained an enhanced capacity to generalise mental rotation to new objects
and to express the possible effects of overt movements of the wrist on mental rotation. The model also
represents a further step in the identification of the embodied neural mechanisms that may underlie
mental rotation in humans and might also give hints to enhance robots’ planning capabilities.
© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

rotate one object, clock-wise or counter clock-wise, until it visually
matches or mismatches the target object. The actual existence of
this process is supported by the main result of mental rotation

Mental imagery concerns cognitive processes for the creation
and manipulation of mental images, and for decision making tasks
on visual object matching (Kosslyn, 1996; Lamm, Windischberger,
Moser, & Bauer, 2007). In a typical mental rotation experiment of
cognitive psychology, a participant has to mentally rotate an object
perceived in a picture to decide if it is the same as a target object or
different from it (i.e. a flipped version of it), and then indicate the
answer by pressing one of two buttons (Shepard & Metzler, 1971;
Wexler, Kosslyn, & Berthoz, 1998). In this kind of task, participants
normally report that in order to make the decision they mentally
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experiments: the reaction time to press one of the two buttons, and
the error rate of the answers, increase with the angular disparity
between the rotated object and the target object.

Mental rotation has been widely investigated not only in
cognitive psychology, but also in cognitive neuroscience and
computational modelling (Kosslyn, 1996; Zacks, 2008). Initially,
it was proposed that the brain mechanisms underlying mental
rotation mainly involve visual and spatial perception systems
(Corballis & McLaren, 1982; Shepard & Metzler, 1971). More
recently, behavioural (Wexler et al., 1998; Wohlschldger, 2001)
and neuroscientific experiments (Georgopoulos, Lurito, Petrides,
Schwartz, & Massey, 1989; Lamm et al., 2007) have suggested the
idea that mental rotation relies on a mentally simulated action
(Michelon, Vettel, & Zacks, 2006) rather than on a purely visual and
spatial imagery skill. Brain-imaging evidence on the brain areas
most involved in mental rotation supports the idea that mental
rotation indeed depends on a strong integration of sensorimotor
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processes and covert mental simulation of motor movements
(see Zacks, 2008, for a review). In particular, based on refined
experimental paradigms, mental rotation has been proposed to
involve the following processes (Lamm et al., 2007): (a) encoding
of stimuli and the generation of mental images; (b) planning
and execution of mental rotation; (c) comparison (matching) of
the rotated stimulus with the target stimulus; (d) decision and
performance of the same/different response. The next subsection
presents a focused review of the empirical evidence on the brain
areas involved in these processes.

Computational models of mental rotation have been proposed
to replicate some limited aspects of human mental rotation
processing. Most of these models tend to focus on the rotation
of objects having different rotation axis and shapes to support
object recognition, and have been developed using artificial neural
network design (Fukumi, Omatu, & Nishikawa, 1997; Fukumi,
Omatu, Takeda, & Kosaka, 1992; Inui & Ashizawa, 2011; Kulkarni,
Yap, & Byars, 1990; Rowley, Baluja, & Kanade, 1998; Sasama,
Mitsumoto, Yoneda, & Tamura, 2009). For example, Sasama et al.
(2009) proposed an error back-propagation neural network model
that takes two images as input and produces one binary vector
as an output that encodes the angular disparity between the two
input images together with a response answer (match/mismatch).
Similarly, Inui and Ashizawa (2011) proposed a radial basis
function neural network to mentally rotate 3D objects. These
models use neural networks but these networks have not been
designed to reproduce brain mechanisms suggested to underlie
mental rotation in humans. Moreover, not being used to control
whole embodied systems, they do not refer to the involvement of
motor mechanisms in mental rotation, and do not consider other
important processes supporting the mental rotation core processes
(e.g. the monitoring of the overall mental-rotation success and
the decision making process needed to produce the final answer).
As a consequence, they reproduce only a few aspects of the
overall mental rotation processes and give little contribution to the
growing neuroscientific literature aiming to understand the brain
neural mechanisms underlying mental rotation.

Computational robotic models have also been used to study
mental rotation. The embodied nature of these models allows a
better representation of the sensorimotor aspects involved in men-
tal rotation. These aspects have indeed been neglected by prior
computational models of mental rotation (e.g., Inui & Ashizawa,
2011; Sasama et al., 2009). Although cognitive robotics models
of mental simulation have been recently proposed (Di Nuovo, De
La Cruz, & Marocco, 2013), these do not directly address men-
tal rotation capabilities, but rather mental simulation for motor
planning tasks. They also do not propose hypotheses on the brain
mechanisms that may underlie them (e.g., Di Nuovo, Marocco,
Cangelosi, De La Cruz, & Di Nuovo, 2012). Robotic models of
mental rotation also have a technological valence. Indeed, endow-
ing robots with mental rotation capabilities could increase their
planning abilities in relation to the manipulation of objects, in par-
ticular, as planning in robots has mainly focused on navigation
(Baldassarre, 2001, 2003; Dissanayake, Newman, Clark, Durrant-
Whyte, & Csorba, 2001; Meyer & Filliat, 2003) and reaching tasks
(Khatib, 1986; Masehian & Sedighizadeh, 2007) rather than on ob-
ject manipulation. Planning applied to object manipulation could
allow robots to mentally simulate in advance the consequence of
potential actions, e.g. to perform only useful actions, to best con-
catenate actions to accomplish complex goals, and/or to generalise
actions to new objects and contexts. As further discussed in Sec-
tion 4 (Conclusions), mental rotation seen as a form of planning
has also some peculiarities related to the low number of actions
involved, and to the fact that it involves spatial transformation
processes that are invariant with respect to the object involved
(Terekhov & O’Regan, 2013), which may suggest interesting solu-
tions for planning problems with this type of features.

We (Seepanomwan, Caligiore, Baldassarre, & Cangelosi, 2013a,
2013b) recently proposed a neural-network model whose macro
architecture was linked to brain macro areas. This model was able
to solve a simple mental rotation task of 2D visually-perceived ob-
jects in a simulated humanoid robot, the iCub (Tikhanoff et al.,
2008). This model, a predecessor to the model proposed here,
was developed within an “embodied cognition” theoretical frame-
work for which high-level cognition processes rely on the same
areas of the brain used to process analogous sensorimotor infor-
mation (Borghi & Cimatti, 2010). According to this view, off-line
cognition, such as mental rotation and imaging, is body based:
“even when decoupled from the environment, the activity of the
mind is grounded in mechanisms that evolved for interaction
with the environment—that is, mechanisms of sensory process-
ing and motor control” (Wilson, 2002). The model departed from
another model - TRoPICALS - developed within the “computa-
tional embodied neuroscience” framework and aiming to estab-
lish detailed links between embodied cognition and behaviour and
the brain system-level mechanisms underlying them (Caligiore,
Borghi, Parisi, & Baldassarre, 2010; Caligiore, Borghi et al., 2013;
Caligiore, Pezzulo, Miall, & Baldassarre, 2013; TRoPICALS focused
on compatibility effects, Tucker & Ellis, 2001, and affordance pro-
cessing, Gibson, 1986; Rizzolatti & Craighero, 2004). The model
(Seepanomwan et al.,, 2013a, 2013b) reproduces some mecha-
nisms, possibly performed in the parietal-premotor brain circuits,
implementing the object mental rotation processes and some other
mechanisms, possibly performed in prefrontal-premotor circuits,
implementing the decision making processes involved in men-
tal rotation (see Zacks, 2008, and Section 1.1, for more details on
the related biological mechanisms). To our knowledge, this model
represents the first instance of a neuro-robotic model of mental
rotation, and a first hypothesis of the brain mechanisms that may
underlie this process. However, despite its ability to solve a typical
mental rotation task, the model has significant limitations. First, it
lacks mental rotation generalisation capability for novel objects.
Second, it generates error rates related to mental rotation tasks
that do not reflect the inherent difficulty of the tasks themselves:
this is due to the decision making component of the model being
based on a rigid non-biologically plausible mechanism that leads
the model to an abrupt drop in performance when the images to
be rotated become increasingly complex. Third, it does not fully
exploit the sensorimotor possibilities rendered by its robotic em-
bodied nature, for example to investigate the interesting interfer-
ence/synergy effects that current proprioception and gestures can
have on mental rotation (e.g., see Wexler et al., 1998; Wohlschldger
& Wohlschldger, 1998). Finally, the model was tested with the iCub
simulator but not with the hardware robot.

In this study we propose a new neuro-robotic model of
mental rotation that builds upon the prior model proposed in
Seepanomwan et al. (2013a, 2013b) and overcomes its limitations
discussed above. Specifically, the new model has generalisation
capabilities to transfer the mental rotation processes acquired with
a small set of 2D visual training stimuli to novel 2D visual objects.
Moreover, it employs a flexible decision making mechanism,
based on biologically plausible models of decision making (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Usher & McClelland,
2001), that reproduces an error rate that varies gradually with
the difficulty of the mental rotation. Further, its mental rotation
capabilities could be challenged with overt movements of the
robot, congruent or incongruent with the covert mental rotation
process, to investigate their interactions (we anticipate that the
model led us to formulate a hypothesis for which proprioception
signals that are congruent with mental rotation can improve its
performance, as in empirical experiments, only if the mental
rotation task is made difficult by some noise sources). The model
is tested through the hardware iCub humanoid robot (Metta,
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Fig. 1. The key brain areas involved in mental rotation and considered in the model. The red-yellow-green colouring highlights increasingly active areas. Left: brain lateral
left hemisphere. Centre: posterior brain view. Right: brain lateral right hemisphere. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
Source: Reprinted with permission from Zacks (2008).

Sandini, Vernon, Natale, & Nori, 2008; Sandini, Metta, & Vernon,
2007) alongside the iCub simulator (Tikhanoff et al., 2008). This
is relevant not only to facilitate the inclusion in the model of
some issues relating to embodied cognition, but also to test
the robustness of the model to the variable conditions of the
environment and of the robot. For example, in the tests presented,
the images from the robot camera changed in different trials
due to luminance changes within the environment, the variable
response of the camera and the accuracy limitations of the camera
motors.

We anticipate that the model still contains various limitations,
further discussed in Section 4, that represent important challenges
for future work. These for example involve a largely non-
neural management of the information flow between the system
components, the coarse granularity of the mental rotation steps,
and the simplicity of the object images used to test the model.
Notwithstanding these limitations, to our knowledge the model
currently represents the most articulated operational hypothesis
of the neural mechanisms that might underlie mental rotation.

The rest of the paper is organised as follows. The next subsection
illustrates the relevant neuroscientific evidence on the brain areas
involved in mental rotation, used here to constrain the overall
model architecture. Section 2 presents the robotic setup followed
by a detailed explanation of the mental rotation task used to
validate the model and finally a description of the main features
of the model and the learning algorithms used to train it. Section 3
presents and discusses the results and Section 4 draws the final
conclusions of the study.

1.1. Brain areas and neural mechanisms involved in mental rotation

Various areas of the human brain have been shown to
be involved in mental rotation through functional magnetic
resonance imaging (fMRI) techniques. A meta-review (Zacks, 2008)
summarises the main areas that several studies have found to play
a relevant role (Fig. 1).

Most brain imaging studies scanning the human brain dur-
ing the performance of the mental rotation task show a promi-
nent activity of the posterior parietal cortex and posterior-occipital
cortex. In particular, the areas around the intraparietal sulcus
(more specifically, the superior parietal lobule, Brodmann Area
BA7, and the inferior parietal lobule, BA 40), and the areas sur-
rounding the parieto-occipital sulcus (parieto-occipital arcus, BA
19) (Carpenter, Just, Keller, Eddy, & Thulborn, 1999; Harris &
Miniussi, 2003; see Zacks, 2008, for a review). The activity of some
of these areas also correlates with the amount of mental rota-
tion requested in the different task trials and dependent on the
object-target orientation disparity. Posterior parietal cortex re-
ceives input related to both visual and somatosensory informa-
tion (Rizzolatti, Luppino, & Matelli, 1998), and on this basis it is

capable of elaborating information about the location and orien-
tation of target objects in peripersonal and extrapersonal space,
and their relation to own body (Andersen & Buneo, 2002; Colby
& Goldberg, 1999), in large part employing eye-centred coordi-
nate frames modulated by own body postures (Snyder, Grieve,
Brotchie, & Andersen, 1998). Posterior-occipital cortex includes
high-level visual areas encoding complex visual features, in par-
ticular related to movement (e.g. involving global and own move-
ment, Braddick et al., 2001). Based on this evidence, these ar-
eas are thought to play a key role in implementing the propri-
oceptive and visual information integration and transformation
supporting the core processes of the dynamic mental rotation pro-
cesses (Zacks, 2008).

Other brain regions that consistently activate during the mental
rotation experiment involve the supplementary motor area and
the premotor cortex, in particular involving the medial precentral
gyrus (BA6) (Cohen & Bookheimer, 1994; Johnston, Leek, Atherton,
Thacker, & Jackson, 2004; Lamm et al., 2007; Zacks, 2008).
These areas encode a repertoire of actions at a more abstract
level with respect to primary motor corteX, and play important
functions in motor planning and execution (Jeannerod, Arbib,
Rizzolatti, & Sakata, 1995). The activation of these areas strongly
supports the involvement of motor processes in mental rotation,
putatively to implement motor mental simulation. This possibility
is corroborated by the fact that the supplementary motor area
has been strongly involved in motor imagery (Stephan et al.,
1995). Some studies also reveal an activation of primary motor
areas, primarily linked to the production of the final response
(button press) rather than to the main mental simulation processes
(Richter et al., 2000).

Kosslyn, Digirolamo, Thompson, and Alpert (1998) and Zacks
(2008) have also shown the activation of prefrontal areas, in
particular the inferior lateral prefrontal cortex (inferior precentral
sulcus, BA44/45). This region, part of Broca’s area responsible for
speech production, is involved in motor production and action
recognition (Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). Given its
high-level within the motor hierarchy, this area might orchestrate
mental rotation at a high-level, as suggested by its role in motor
imaging (Grafton, Arbib, Fadiga, & Rizzolatti, 1996).

Several components of the model are formed by neural maps
using, in specific or abstract ways, population codes. Neural maps
are suitable to model cortical areas as they capture their important
2D topological organisation and also facilitate the analysis and
visualisation of the processes occurring within them (Caligiore,
Parisi, & Baldassarre, 2014). Population codes (Pouget, Dayan, &
Zemel, 2003) are based on the idea that information (on stimuli
and actions) is encoded in the brain on the basis of the activation
of populations of units organised in neural maps having a broad
response field. In particular, each unit responds maximally to a
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Fig. 2. The iCub humanoid robot used to reproduce the behaviour of a participant of mental rotation experiments. (a) Real robot. (b) Simulated robot.

certain value of the variables to encode and then progressively
less intensely to more distant values. This response can be
obtained with short-lateral excitatory connections and long-lateral
inhibitory connections, or in a more abstract fashion (as for most
maps used here) with Gaussian functions.

To implement the decision making process involved in the
mental rotation task, the model uses a mutual inhibition model
(Bogacz et al., 2006; Usher & McClelland, 2001). In this model
(closely related to the architecture and neural competition that
can be implemented by population-code maps) different decision
options are represented by neural units that accumulate over time
the evidence (support) on the goodness of the different options,
compete through reciprocal inhibitory connections of the units,
and finally produce a decision when the activation of one of
them reaches a given threshold. This model (together with other
analogous models, e.g. Bogacz et al., 2006) is very important, as
it allows the reproduction of the reaction times often recorded in
psychological experiments (Caligiore et al., 2010, 2008; Erlhagen &
Schoner, 2002). It is one of the most accredited models of decision
making processes taking place in the human brain (Bogacz, 2007).

In the brain, several processes needed to acquire and express
mental rotation (e.g., learning from experience, and selection
of cortical contents) are putatively implemented by cortical
areas working in close cooperation with sub-cortical regions, in
particular basal ganglia and cerebellum with whom they form
whole integrated systems (Alexander, DeLong, & Strick, 1986;
Baldassarre, Caligiore, & Mannella, 2013; Caligiore, Borghi et al.,
2013; Caligiore, Pezzulo et al., 2013; Middleton & Strick, 2000). For
simplicity, the model reproduces in abstract ways such processes,
e.g. to implement the decision making processes and the mapping
of the object representations to the corresponding arm postures,
without explicitly simulating these sub-cortical systems.

2. Methods
2.1. The iCub humanoid robot

Fig. 2 shows the real and simulated iCub humanoid robot
we used to reproduce the behaviour of the participants of the
mental rotation experiment. The iCub is a many degrees of freedom
(DOFs) robot built for studying cognitive development in humans
(Cangelosi & Schlesinger, 2015; Sandini et al., 2007). In the tests of
the model, the robot used one “eye” (i.e., one of its two 640 x 480
RGB cameras) to perceive the visual stimuli and the joint 5 of the
right arm to control the wrist angle. The model guided the learning
and performance of the robot during the mental rotation task.
The robot did not hold real objects, but it could move its wrist
in order to assume the wrist orientation corresponding (or not)
to the orientation of the mentally rotated object, allowing us to
study how the mental rotation process can be affected by overt
action (i.e., the wrist movement and posture) similar to that of
experiments involving humans (Wexler et al., 1998; Wohlschldger,
2001; Wohlschldger & Wohlschldger, 1998).

2.2. The stimuli

Fig. 3 shows the three sets of 2D abstract objects, broadly sim-
ilar to those employed by Hochberg and Gellman (1977), used as
stimuli during the mental rotation tasks. The stimuli were coloured
in red to improve their detection by the iCub’s camera. They were
designed to create different levels of difficulty in the mental rota-
tion task. Each set (A, B, C) consisted of three objects which could
assume six orientations (90°, 60°, 30°, 0°, —30°, —60°) and could
have a basic appearance (the one shown in Fig. 3) or an appear-
ance corresponding to the “mirror” image of the basic appearance.
The stimuli of the sets A and B, three for each set, contained a clear
main axis (we will see this is important to perform mental rota-
tion). However, the stimuli of set B were formed by more features
than the stimuli of set A. Stimuli from set A were used for train-
ing the model and for a recognition test (Recog; Fig. 3(a)) whereas
those from set B were used in a test directed to measure the gener-
alisation capabilities of the model (Gen1; Fig. 3(b)). Stimuli from set
Crepresented a more complex dataset that did not contain a strong
orientation axis as in sets A and B. Set C was further used for a sec-
ond, more challenging generalisation test (Gen2; Fig. 3(c)). Fig. 3(d)
gives some examples of pairs of stimuli shown to the robot during
the tests Recog, Gen1 or Gen2 (each test involved showing multiple
pairs in different trials). In each object-pair image the object on the
left was the target object (henceforth called “target object”) and
the object on the right was the one to be mentally rotated (hence-
forth “rotated object”). Each object was used to generate 144
object-pairimages (144 = 22 x 6 x 6, where 2? is the number of the
possible combinations of the basic and mirror appearance of the
target and the rotated objects, and 6 are the initial possible orien-
tations of the target and the rotated objects). The number of object-
pair images used in each test was hence 432 (144 x 3, where 3 is
the number of objects for each set), and the overall total number
of object-pair images used over all three tests was 1296 (432 x 3).

2.3. The mental rotation task

The robot was tested in a mental rotation task similar to
those typically used in mental rotation experiments with humans
(e.g., Shepard & Metzler, 1971; Wexler et al., 1998). In this task,
two visual stimuli having different orientation (90°, 60°, 30°, 0°,
—30°, —60°) and appearance (“basic” or “mirror”) combinations,
are shown to the robot on a computer screen as illustrated in
Fig. 4 (bottom right). The robot has to compare the two stimuli and
decide if they are the same or different object. The model does not
have attention control, so the behaviour of scanning the target and
the rotated objects with the camera is hardwired and performed in
sequence, thus allowing the robot to take a snapshot of each of the
two objects.
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Fig. 3. (a) Stimulus set A, used for training and for the recognition test (Recog).
(b, ¢) Stimulus sets used for the generalisation tests (respectively Gen1 and Gen2).
(d) Three object-pair images used during the tests. In the three examples, the left
object is the target object, here rotated 90° to the left, whereas the right object is
the object to be rotated, here having a 0° rotation (in all three examples the rotated
object is different from the target object).

2.4. Model architecture and functioning of its components

The model architecture (Fig. 4) is formed by several components
corresponding to the main brain areas involved in the mental rota-
tion processes (as illustrated in Section 1.1, see Fig. 1). In this sub-
section we overview the model components and their role within
the whole system, whereas in the following subsections we de-
tail the mechanisms behind their functioning and learning and the
reasons for their choice. The components of the model architec-
ture are the early visual cortical areas (VC), the parieto-occipital
cortex (POC), the posterior-parietal cortex (PPC), the premotor cor-
tex (PMC), the prefrontal cortex (PFC), and the primary motor cor-
tex (M1). Each component is formed by subcomponents (mainly
neural maps) performing different functions. VC is an image-
processing component that extracts the edges of objects from the
current image in a way which is reminiscent of early visual cor-
tex processes (Hubel, 1988). POC is formed by five neural maps of
32 x 32 units each: POCi encodes the current imaged orientation
of the rotated object during mental rotation; POCI, POCs, and POCr
anticipate the image of the rotated object if a left/still/right mental
rotation of respectively —30°, 0°, 30° of the current image encoded
in POCi is performed. Based on the planned movement supplied by
PMCm, only one of these three possible rotations is performed (for
example leading to the rotated object image encoded in POCr). The
resulting image is relayed to POCp which encodes the predicted
rotated image depending on the performed rotation.

PPC is formed by three components: PPCp, which is formed by
six units and encodes the proprioceptive signal related to the robot
wrist orientation corresponding to the current actual or imaged
orientation of the mentally rotated object encoded in POCp; PPCt,
which is formed by six units and encodes the target orientation
of the wrist corresponding to the orientation of the target object

I\:I:I. Executed action
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/ o \ 4 PMCd

Overlap J‘) c13
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| co

H Planned action
g
fPMCm] |
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Ve . : setup

Task image from screen

Target Rotated
object  object

Fig. 4. The neural network model controls the iCub robot during the mental
rotation task. The bottom right picture shows the robot in front of the screen
where it sees the target and rotated objects. Thin arrows indicate hardwired
connections. (Fixed connections in most cases are set to 1.) Bold arrows indicate
trained connections. Dashed arrows indicate information flows.

encoded in PFCt; PPCc, which is formed by 6 x 6 units and combines
the signals from the current imaged wrist orientation (PPCp) and
its desired orientation (PPCt) to select a desired movement in
PMCm.

PMC is formed by two components: PMCm, which is formed by
three units that encode three possible movements (taking place in
M1, here not explicitly simulated), i.e. respectively: Ml = —30°
corresponding to an anti-clockwise “left” rotation of the wrist;
Ms = 0° corresponding to a “stay”, or null, rotation; Mr = 30°
corresponding to a clockwise “right” rotation; and PMCd, which is
explained in detail below as it depends on PFC.

PFC is formed by two neural maps of 32 x 32 units each:
PFCt, which represents a working memory map used to store the
visual appearance of the target object; PFCtm, which computes the
amount of overlap (matching) between the rotated object image
(POCp) and the target image (PFCt) to support the decision making
process implemented in PMCd.

Finally, PMCd is formed by two units activated by “evidence”
from PFCtm on the current matching of the predicted rotated
image (POCp) with the target object (PFCt). Broadly speaking, a
large overlap provides evidence for a “YES” answer and a small
overlap provides evidence for a “NO” answer. On this basis,
PMCd implements a decision making process (neural competition)
selecting a “YES” or “NO” response mimicking the decision to press
one of the two response buttons of the experiments with humans
(further details are given below). Table 1 summarises the main
features of the neural maps used in the model, whereas Table 2
summarises the main features and functions of the connections
between the maps.

2.5. Model functioning

The robot tests, mimicking the mental rotation laboratory
experiment, were performed both with the iCub Simulator and
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Table 1
Key features of the neural maps of the model.

Map Area Encoding Number of neurons

POCi POC Current object mental image 32 x 32

POCI, POCs, POCr POC Possible rotated object image 32 x 32

POCp POC Predicted object image 32 x 32

PFCt PFC Target object image 32 x 32

PFCtm PFC Target/object match 32 x 32

PPCp PPC Proprioception of wrist 6

PPCt PPC Target wrist orientation 6

PPCc PPC Target-actual orientation combination 6 x6

PMCm PMC Planned wrist movement 3

PMCd PMC Decision “YES/NO” 2

Table 2
Key features of the connections of the model.

Connection Type Weights values Function Areas
C1,C2,C3 All-to-all Trained with delta rule Mental image rotation POC
C4, C5, C6, C7 One-to-one 1.0 Relays of information POC
C8 One-to-one 1.0 Mental image for matching POC — PFC
c9 One-to-one 1.0 Target image for matching POC
c10 One-to-one 1.0/num. of target image pixels Size of matching PFC
C11 One-to-two —10.0 Inhibition of decision PFC-PMC
C12 One-to-one 1.0 Evidence for YES answer PFC-PMC
C13 One-to-one —-1.0 Evidence against YES (NO) PFC-PMC
C14 All-to-all —10.0 Inhibition of decision PMC
C15 One-to-one —05 Dynamic competition PMC
C16 All-to-all Trained with Kohonen Orientation — proprioception POC — PPC
C17 All-to-all Trained with Kohonen Target — desired wrist angle PFC— PPC
C18 All-to-all {0.0, 1.0} Info on predicted angle PPC
Cc19 All-to-all {0.0, 1.0} Info on desired angle PPC
C20 All-to-all {0.0, 1.0} Action selection POC — PMC
CN1, CN2,CN3 All-to-all 1.0 Selection of rotation PMC — POC

the actual iCub robot. The robot training, mimicking learning
processes undergone by participants before the mental rotation
experiment, was performed on the basis of the processing of simple
images not involving the robot. The robot tests that used the
actual iCub robot were more challenging than those performed
with the iCub Simulator as they involved noisy/distorted images
captured with the robot cameras, camera movements, and wrist
movements generating information on proprioception based on
the robot encoders. This is shown in Section 3 by comparing the
performance of the model from both the simulated and real robot
tests.

Each trial of the robot test is divided in succeeding time steps.
At each step the robot performs a mental rotation, perceiving the
image of the target object and of the rotated object in the computer
screen via its left eye (camera). To this purpose, the eye gaze (centre
of the camera) is first focused on the target object, and then on
the rotated object, with hardwired movements. The two images
are red-colour filtered and the edges of each object are extracted
with the Canny edge detection technique (Canny, 1986; OpenCV
library). The output from the edge detection process is used to
activate the input units of VC. The target-object image activates the
PFCt map that stores the target image as a working memory, then
triggering the activation of PPCt, which encodes the current target
(desired) wrist orientation corresponding to the current target
object orientation.

Within POC, in the first mental rotation step POCi activates POCs
corresponding to an anticipated image after a planned rotation
of 0° (corresponding to no rotation/still object). From the second
mental rotation onward, POCi activates one of the POCI, POCs, POCr
maps depending on the planned movement (PMCp) corresponding
to a possible wrist rotation of respectively +30°, 0°, —30°.

Within PPC, PPCt is activated by PFCt encoding the target
image of the mental rotation. This causes an activation of PPCt
representing the desired posture of the wrist corresponding to
the target object orientation. Similarly, PPCp is activated by the
predicted object image in POCp representing the wrist posture

corresponding to the imagined object. In detail, units of PPCt (and
similarly PPCp) have a Gaussian activation computed as follows:

PPCpA; = »  w;iPOCP; (1)
Iyin = max (PPCpA)
PPCp; = G (dist (Lyin. I}))

where PPCpA; is the activation potential of unit j of PPCp, POCp;
is the activation of unit i of POCp, wj; is the connection weight
between the two units, max is a function returning the index I,
of the unit of PPCp with maximum activation (winning unit), dist
is a function computing the distance (in the neural space) between
the winning unit and a given unit with index Ij.

PPCc combines the signal from PPCp, encoding the wrist posture
corresponding to the current orientation of the rotated object
with the signal from PPCt, encoding the target (desired) wrist
orientation, to suitably select a movement within PMCm. This
integration is performed with a signal multiplication as it is done
in the gain-field models to capture what happens in parietal cortex
(Pouget et al, 2003; Pouget & Sejnowski, 1997). In gain-field
models, the output map is obtained in a hardwired fashion as the
neurons of the map, here PPCc, encode all possible combinations
of the input vectors, here PPCt and POCp, so that learning is
not needed. In brain, neural maturation mechanisms and refining
local learning processes could lead to form such combinatorial
encoding. To obtain this combinatorial activation of PPCc, each unit
in PPCt is connected to all units in the corresponding unit row
of PPCc, whereas each unit in PPCp is connected to all units of
the corresponding unit column in PPCc. The activation of a PPCc
unit is then obtained by multiplying the activation of the two
input signals (see Fig. 4; all the connections of C18 and C19 are
equal to 1 when present; see Salinas & Abbott, 1996, for a neural-
network implementation using only standard additive neural
operations to obtain gain-field effects as those obtainable, as here,
with multiplication). Here PPCp and PPCt are one-dimensional
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population codes, encoding the object orientation in terms of wrist
posture, and PPCc is a two dimensional population code encoding
the combination of information from PPCp and PPCt. In detail:

PPCc;; = PPCt; % PPCp;. 2)

We now focus on PMC. PMCm units receive the following
activation from PPCc:

AMk = Z (wkﬁ * PPCC]‘,‘) (3)

where AMy is the activity of units M1, Ms and Mr of PMCm and wy;;
are the connection weights from PPCc to PMCm. The connection
weights wy;; have a particular configuration: the 6 main-diagonal
units of PPCc are equal to one only towards unit Ms in PMCm, and
zero otherwise; the 15 units at the top right of the main-diagonal
are equal to one only towards unit Mr, and zero otherwise; the
15 units at the bottom left are equal to one only towards unit M,
and zero otherwise. This connectivity biases the activation of a
certain unit, and hence the selection of a certain movement, within
PMCm. In real participants the motor skills corresponding to these
connections might form in early life on the basis of reinforcement
learning processes (Barto & Sutton, 1998) not simulated here for
simplicity. PMCm units are activated on the basis of a softmax
function, ensuring an output that sums up to one for the three
units, and hence can be interpreted as a probability and can be used
to randomly select one of the three corresponding actions (Ml, Ms,
Mr):

p (My) = exp (AM;/T) /Z exp (AMy/T) (4)

where p(M,) is the probability of selecting action My, exp(-) is the
exponential function, and T is the temperature parameter of the
softmax function (set to 0.1) that regulates the sharpness of the
selection. The stochastic process of action selection used here ab-
stracts the winner-take-all action selection mechanisms possibly
implemented in basal ganglia-motor cortex loops (Alexander et al.,
1986; Baldassarre, Caligiore et al., 2013) used in several models of
these loops (Doya, 2000).

The signal from PMCm is used as input to POC to select the
suitable direction of the mental rotation, through the selection
of either POCI, POCs, or POCr predictions. To this purpose, the
units of these maps activate only if they receive an input from
the corresponding units of both PMCm and POCi (neurally imple-
mented with a summation of the two signals and a threshold of
1.5). The selection of the activation pattern of one of these maps
causes the prediction of a rotated image in POCp. In the next ro-
tation step, the rotated image in POCp is fed back to POCi and to
PPCp (and hence PPCc and PMCm) to cause the next mental ro-
tation, thus implementing a repeated reverberation of informa-
tion through POC-PPC-PMC, implementing the visual and motor
mental rotation processes. Reverberation mechanisms similar to
these and pivoting on forward models (here implemented by the
POCi-POCl/s/r neural networks) have been extensively used as a
proxy to represent planning based on mental imaging in bioin-
spired computational models (Baldassarre, 2003; Butz, Sigaud &
Gérard, 2003; Grush, 2004; Ziemke, Jirenhed, & Hesslow, 2005).

We now focus again on PMC, in particular on the decision
making process implemented in PFC/PMCd. This process allows the
model to decide if any internally generated image of the rotated
object does or does not match the target object image. To this
purpose, PFCt acts as a working memory, storing the target object
image from VC. PFCtm is formed by units that activate only when
the units of the mentally-rotated object image in POCp match
the units of the target object image encoded in PFCt. To this
purpose, PFCt and POCp are connected to PFCtm through one-to-
one connection weights and only the units of PFCtm receiving an
activation above a threshold of 1.5 are activated.

The activation of the units of PFCtm is summed up (and
normalised with the activation of PFCt) by a PFC unit encoding
the size of the matching between the imaged object and the target
object. In turn this unit excites the unit of PMCd representing a YES
reply action (PMCdy.s) and inhibits the unit of PMCd representing
a NO reply action (PMCd,, has a fixed bias of 0.85). The units of
PMCd, forming a reciprocal inhibition model of decision making,
implement a neural dynamic competition based on the following
differential equations (Bogacz et al., 2006; Usher & McClelland,
2001):

TPMCdyes = —kPMCdyes — wPMCdyo + PFCypy
— i (Ml + Mr) — i (PFCy < th) (5)
TPMCdp, = —kPMCdye — wPMCdyes 4 (0.85 — PFCypy)
—i (Ml + Mr) — i (PFCyn < th) (6)

where t (t = 0.2) is a time constant, k (k = 0.2) is a decay rate
of PMCd units (PMCdyes, PMCdy), w (w = 0.2) is the inhibitory
connection between the two PMCd units (the equations consider
the activations of the PMCd units at the previous time step for
this purpose), PFCtm represents the overall activation of the PFCtm
map, computed as the sum of the activities of its units divided
by the sum of the activity of the units of PFCt (so, the value of
this variable ranges in [0, 1]), Ml + Mr is an inhibition from the
movement units of PMCm, implying that a decision is not made if
the system is still mentally rotating the object, and (PFCtm < th)
is avariable equal to 1 when PFCtm < th, and equal to O otherwise.
This ensures an inhibition of the decision making process when
the matching is below a threshold th (th = 0.15; i = —10). The
differential equations were integrated with the Euler method with
a time-step equal to 0.02.

For each mental rotation step, this dynamic competition makes
ten cycles that allow the units of PMCd to accumulate evidence
for the YES or NO reply, and to compete between them, for each
mental rotation step. When one of the two units achieves the
threshold of 1.0, the system is considered to have made a decision
in favour of the YES/NO reply corresponding to it. The time needed
to solve this competition, measured from the beginning of the
mental rotation trial, is considered as the reaction time taken by
the system to perform the mental rotation and to make a decision
(cf. Bogacz et al., 2006; Caligiore et al., 2010; Caligiore et al.,
2008; Erlhagen & Schéner, 2002; Usher & McClelland, 2001). The
maximum number of mental image rotation steps for trial was
set to 20 in all simulations: if the model did not give an answer
within this time window, it was forced to give a random answer
(which happened rarely). The accumulation of evidence lasted the
whole trial, i.e. the units of PMCd were reset at the beginning of
each trial, but not during it. This allowed the system to accumulate
evidence for a NO reply during the whole trial, and to rapidly
accumulate evidence for a YES reply in the presence of a large
overlap of the rotated object with the target object. The balancing
of these two processes was an important element to produce a
correct behaviour of the model.

2.6. Model learning

The model underwent two learning processes before being
tested. These processes allowed the system to respectively acquire
the core capacity needed to predict/imagine the visual appearance
of objects after a step of mental rotation (forward models:
connections C1, C2, C3), and to associate to a certain object image
the corresponding object orientation encoded, in an embodied
fashion, in terms of corresponding wrist orientation (connections
C16 and C17). These learning processes are intended to capture
the processes of acquisition of the general capability of rotating
objects that human participants acquired during life, before
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undergoing the psychological experiments on mental rotation.
The first learning process, involving the connections C1, C2, and
C3, allowed the system to form the forward models need to
mentally rotate images. The second learning process, involving the
connections C16 and C17, allowed the system to associate object
images with the corresponding object orientations, encoded by
proprioception in terms of wrist posture. This process captures
the acquisition of associations between proprioceptive and visual
information reaching PPC. For simplicity, we did not perform the
two training processes with the robot directly rotating objects with
a hand. Indeed, the use of actually rotating objects on one side
would have posed difficult artificial vision problems (as the hand
would have occluded the object sight) going beyond the scope
of this work, and on the other side would have not produced
advantages in terms of explanatory power of the model with
respect to the target mental rotation experiments.

We now consider the two learning processes in detail. The
training of the forward models needed to mentally rotate objects
(connections C1, C2, C3) was done on the basis of images each
formed by 3 dot-points randomly located in the image. This was
done because preliminary experiments showed that training the
robot with standard objects (e.g., as those used to during tests) was
computationally very demanding and progressively converged to
abilities as those acquired by the robot with the three-dot simpler
images. This choice was also supported by the result of previous
models showing that transformations in space can be generalised
over the specific objects involved (Terekhov & O’'Regan, 2013). The
images were projected on a computer screen and perceived by the
robot through its camera. Each forward model was thus trained by
presenting 3-dot patterns as input, then by rotating them through
the rotation angle corresponding to the forward model, and then by
presenting the resulting 3-dot pattern as desired output to it. Based
on pilot experiments we could see that this procedure ensured
a fast training of the forward models. Figs. 5 and 6 illustrate the
training strategy in detail. The filled dots shown in Fig. 5 represent
the image encoded in POCi whereas empty dots represent the
desired image that POCI/s/r units should encode after one rotation
step. This latter image was obtained by using “cvWarpAffine”, an
image transformation function of the OpenCV library. As shown in
Fig. 5, the images of the three random dots were formed by 32 x 32
pixels: the three dots were drawn within a smaller 23 x 23 pixel
area of the image to ensure that after rotation possible dots drawn
on corner locations of this 23 x 23 pixel area were located within
the 32 x 32 pixel image.

During training, PMCm selects a rotation action at random, and

the selected rotation then denotes which of the forward models C1,
C2 and C3 to train. The three-dot images (Fig. 5, black dots) were
encoded in POCi as an input pattern for the forward model, and the
predicted rotated three-dot images (Fig. 5, white dots) were used
to denote the desired output of POCl/s/r. Training was based on the
delta rule:
Awji = 1 (dj — y;) % (7)
where Awj; is the change of the connection weight between units
iandj, nisalearning rate (n = 0.1), d; is the desired activation
of output unitj, y; is the actual activation of output unit j, and x; is
the activation of input unit i.

We now focus on the training of connections C16 and C17. This
training led the system to develop suitable associations between
the object images and their corresponding wrist posture. The
training was based on an abstraction of “motor babbling” (Caligiore
et al., 2008), a process where random movements are exploited to
acquire motor competencies. In particular, the robot was assumed
to hold in hand an object and to perform random wrist rotations
with it. The shape of the object was projected on a computer screen,
perceived by the robot through its camera, and represented in
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Fig. 5. Illustration of the procedure used to train the forward models of the system.
The left panel illustrates the creation of a 30° clock-wise rotated image related to
three random dots, whereas the right panel shows the effect of the opposite —30°
rotation. Arrows and dashed lines indicate the direction of rotation: the three full
dots represent the image to be rotated whereas the three empty dots represent the
resulting rotated (predicted) image. Small circles represent the centre of rotation.
The three random dots were generated within the dashed square areas (23 x 23
pixels) to keep the image within the larger square image area (32 x 32) after
rotation, as the random dots could be drawn on the corner locations of the 23 x 23
area.
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Fig. 6. Performance of the simulated robot during the three mental rotation tests:
(a) Reaction time (RT); (b) Error rate (ER); (c) Correct response (CR).

POCp and PFCt. As mentioned above, we used the clean images of
the objects, without the occlusion of the robot hand. In Section 3
we will also present the results of a simulated version of the
experiment where the images used by the model will be those sent
to the monitor. These images represent a “perfect vision” and allow
measurement of the effect, on the robot performance, of the noise
and distortions of the images projected on the real screen when
perceived through the real robot camera.
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To activate PPCt and PPCp, necessary for the training, we
performed the wrist rotations only once, recorded the related
wrist postures, and used these measures during the whole training
process. This was performed to lessen the training time, as the
rotation during the whole training on one side would have taken
very long and on the other side was not necessary as, given the
discrete number of possible wrist postures, we could assume a
stable activation of POCt and POCp. In other words, the encoder
continuous value could be mapped onto few discrete values
needed to activate POCt and POCp. To ensure the equivalence of
this procedure to the actual use of the real robot wrist rotation,
the results reported in Section 3 on the effect of proprioception
on mental rotation were performed with the real robot actually
rotating its hand.

A supervised learning rule was used to train the connections
C16 and C17. This rule exploits some of the mechanisms of the
(unsupervised) Kohonen learning rule (Kohonen, 2001) but is used
in a supervised-learning fashion to ensure the acquisition of the
link between images and their corresponding wrist orientations.
The idea is that, during learning, the available proprioception can
furnish a suitable desired output of the mapping. Specifically,
instead of selecting the unit with the highest activation potential
as the winning unit of PPCp (and PPCt), as prescribed by the
unsupervised Kohonen learning rule and as done during the model
functioning (see Eq. (1)), we selected as the winning unit the unit
encoding the particular wrist posture corresponding to the current
objectimage. Once the winning unit was established, the activation
of the PPCp units was performed as in Eq. (1) (population code).
Based on this activation, we updated the connection weights C16
(similarly C17) as follows:

Awj; = nPPCp; (POCp; — wj;) (8)

Wji = wﬁ/z Wiq 9)

where Awj; is the weight update, n is the learning rate set to
0.1, PPCp; is the Gaussian activation of output unit j, POCp; is
the activation of the input unit i, and wj; is the current weight
value. Eq. (8) ensures that the connection weights reaching PPCp
(or PPCt) units that are highly activated by the current posture
become progressively associated with the active units of POCc
(or PFCt) encoding the current object image. Eq. (9) normalises
the connection weights after each update. After learning, when
an object image with a certain orientation is perceived, it tends
to cause a concentrated activation of a few PPCp units encoding
the wrist posture corresponding to it; instead, when a more
difficult object is perceived the activation tends to be more equally
distributed (“flat”) over all units.

3. Results and discussion

This section illustrates the results of the training and testing
of the model. All results reported here refer to averages from
data obtained by training and testing the model ten times (for
each training and test, the trained connection weights of the
model were assigned small random initial values). This might be
considered equivalent to testing ten simulated participants with
the mental rotation tasks. Three types of data were recorded during
the mental rotation tests (data were also averaged over the trials
corresponding to different object-pair images): (1) the response
times (RT): this is the number of steps used by the decision
making process to trigger a YES/NO answer: RT were measured
for each disparity angle between the target and the rotated objects
(recall that for each mental rotation cycle the neural competition
underlying the decision making process performs ten cycles); (2)
the error rates of the answers (ER): this is the number of times the

model gives a wrong answer (i.e. it replies YES in correspondence
to different objects or NO in correspondence to same objects),
measured for each disparity angle between the target and the
rotated objects; (3) the percent of correct responses (CR), averaged
over all disparity angles.

Note that at this stage of the model development we aimed
at reproducing the behavioural target data from the experiments
with human participants only qualitatively. This, together with
the knowledge on brain areas (see Section 1.1), allowed us to
impose constraints on, and hence guide, the construction and
progressive improvement of the architecture, functioning and
learning mechanisms of the model. Aiming to reproduce the data
quantitatively would have required a large number of experiments
with the robot in order to suitably tune the model parameters:
this was practically very difficult and would have produced little
additional knowledge at this stage of model development.

3.1. Mental rotation and generalisation

Fig. 6 illustrates the results of the tests mimicking the mental ro-
tation experiment with the simulated robot. The figure illustrates
the RT and the ER in correspondence to different disparity angles
between the target and the rotated objects, and the CR, for the three
tests Recog, Gen1, and Gen2. The figure shows that, for all tests, the
RT and ER increases with the stimuli disparity. These results qual-
itatively agree with data obtained from experiments with humans
(Shepard & Metzler, 1971; Wexler et al., 1998).

Fig. 6(a) and (b) show that the Recog and Gen1 conditions lead
to similar RT and ER, implying that the model has a good gen-
eralisation capability. This capability relies on the capacity of the
forward models of the model to mentally rotate different possi-
ble objects even when they have not been previously experienced,
and represents an advancement with respect to previous models
that could only rotate objects with which they were trained (Seep-
anomwan et al., 2013a, 2013b).

Fig. 6(c) even shows that the CR of the condition Gen1 is better
not only in comparison to Gen 2 (t-test, mean of Gen1 = 81.04,
mean of Gen2 = 63.66, p < 0.001) but also in comparison to
Recog (t-test, mean of Recog = 78.56, meanof Gen1 = 81.04, p <
0.001). Recog is also better than Gen2 (t-test, mean of Recog =
78.56, mean of Gen2 = 63.66, p < 0.001). The reason for which
Gen1 is even better than Recog is possibly that the objects used
in Gen1 contain a clearer information on orientation: this leads
to a clearer proprioceptive simulation within PPC and benefits the
matching decision making process.

The greater RT for Gen2 with respect to Recog and Gen1 for most
disparity values, including the zero disparity value not requiring
mental rotation, is due to a smaller difference between the two
inputs to the “YES” and “NO” neurons in PMCd. This smaller
difference leads to a slower accumulation of evidence in favour
of one of the two answers. This also leads to a higher ER. A direct
inspection of the behaviour of the model revealed the nature of
the errors with Gen 2. In some cases, the model gives an answer
even when the two images of the target and rotated object do not
have the same orientation. This can happen when the number of
overlapping units in PFCtm is high enough to make the activity
level of one of the two units in PMCd exceed the threshold. In other
words, in these cases two images are very similar, notwithstanding
they have a different orientation, and therefore trigger a false
recognition. On the other hand, in some other (more rare) cases
the model is able to correctly rotate the object to match it with
the target but the number of overlapping neurons in PFCtm or
PFCfm is small. In these cases, the images are not similar enough
leading to a lack of recognition as the model arrives to the trial
time-out, causing a random, and possibly incorrect answer (this
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Fig. 7. Performance of the model in the real robot (iCub) during the three mental
rotation tests: (a) Reaction times (RT). (b) Error rates (ER). (c) Correct response (CR).

may represent cases where the experiment participants produce
an answer although they are not sure of their choice).

Fig. 7 shows the results of a similar reproduction of the
mental rotation experiment obtained with the real robot. The
results are qualitatively similar to those obtained in simulation, as
illustrated above, with the exception that now the slight increase
in performance (CR) of Gen1 with respect to Recog is no more
statistically significant (t-test, mean of Recog = 72.94, mean of
Genl = 73.22, p = 0.615). Recog and Gen1 conditions are
confirmed to be better than Gen2 (t-test, mean of Recog = 72.94,
mean of Gen2 = 61.97, p < 001; mean of Genl = 73.22,
mean of Gen2 = 61.97, p = 0.001). The performance of the
model measured as CR is higher in the simulated tests than in those
carried out using the real robot (t-test: mean of simulated Recog =
78.56, mean of real Recog = 72.94, p < 0.001; mean of simulated
Genl = 81.04, mean of real Gen1 = 72.94, p < 0.001; mean of
simulated Gen2 = 63.66, mean of real Gen2 = 61.97, p < 0.001).
This is due to the challenges posed by the real robot tests using
noisy/distorted images from the real robot camera.

Overall, these results show that the model was able to
generalise the mental rotation ability to the never seen objects of
Gen1 and Gen2 image sets. This ability was acquired on the basis of
the Recog images used to train the image-wrist posture mappings
(C16 and C17 connections), and the simple three-dot images used
to train the forward models (C1, C2, and C3 connections). The
generalisation capability of the forward models to rotate any
object (here represented with edges) ultimately relies on the
important fact for which translations and rotations in space are
transformations that are independent of the features of the specific
object being translated or rotated (Terekhov & O'Regan, 2013). The
results of the tests with Gen1 and Gen2 specify and quantify the

generalisation capabilities of the system. With Gen1, whose novel
objects have many distinct features and a clear orientation axis,
the model is able to rotate and compare the rotated and target
objects in a good way, thus achieving RT and ER similar to those
of the training set (Recog). Instead, the objects of Gen2 are much
more difficult to rotate and match as they have many features
matching the target image even when the orientation of the object
and target differs. The system thus performs more erratic rotations,
resulting in longer RT, and several matching and decision making
errors, resulting in higher ER (we will see specific examples of
these errors in Section 3.3). Last, the results confirm the higher
challenges posed by the tests carried out with the actual robot vs.
those carried out in simulation.

3.2. The role of overt movements during mental rotation and a
prediction of the model

The model was also used to investigate the possible effects of
performing overt movements on the mental rotation processes.
In this respect, empirical data (e.g., Chu & Kita, 2011) show
that if the direction of the overt movement performed during
the mental rotation task is congruent with the direction of the
mental rotation, participants of the experiments are facilitated
to solve the task (lower RT). Vice versa, if the direction of the
overt movement is opposite with respect to the direction of the
mental rotation, people are hampered to solve the task (higher
RT). Here we analysed, using the real robot, how the overt wrist
movement affected the mental rotation processes during three
tests using the Recog, Gen1, and Gen2 images. In the tests, the robot
performed wrist movements that were either congruent (“match
proprioception”) or incongruent (“mismatch proprioception”)
with respect to the movement direction of the rotated object.
To this purpose, we assumed that proprioception causes the
activation of anterior PC proprioceptive areas in turn activating
other associative areas (such as PPCp, Rizzolatti et al., 1998) and
we hypothesised that the mentally simulated rotation causes the
activation of the same areas. The latter hypothesis is in line with
the embodied cognition framework adopted here, described in
Section 1, and with the direct evidence reported in Section 1.1.

In particular, during mental rotation, the real robot wrist
movement signals were recorded through the wrist encoder and
mapped into one of the six possible orientations, with the resulting
angle used to add an additional activation to the corresponding
units of PPCp (the activation had the shape of a Gaussian over PPCp
units: the Gaussian had a height equal to 1 and was centred on the
PPCp unit encoding the wrist angle). In the “match proprioception”
condition, if the model mentally rotated the current image to the
left, the robot moved its wrist to the left. In this case the same
unit in PPCp was activated by two signals encoding respectively
the orientation of the mentally-rotated object, encoded in POCp,
and the orientation of the wrist, based on the wrist-angle derived
from the robot wrist-posture encoder signal. In the “mismatch
proprioception” condition, if the model mentally rotated the
current image to the left, the robot moved its wrist to the right,
and vice versa. In particular, two opposite units in PPCp were
activated by the two signals, the predictive and the proprioceptive
signal. For example, if the mental rotation process led to activate
the POCp unit number 1, the proprioceptive signal caused the
activation of the opposite unit, number 6; if the mental rotation
process led to activate the unit number 2, the proprioceptive signal
activated the opposite unit, number 5, and so on. In line with
the empirical experiments run with humans, we expected that
when the movement direction of the wrist matched the direction
of mental rotation, the resulting RT and ER would have decreased
while CR would have increased.

The results of the tests, shown in the graphs at the left side
of Fig. 8, indicate that indeed the mismatch condition led to
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Fig. 8. Recog dataset: results when supplying the model with an additional proprioceptive input from the robot wrist that matches (“Match”) or mismatches (“Mismatch”)
the mental rotation direction (“Normal” refers to the model without additional proprioception). Left graphs: results when adding the proprioceptive input to the “Normal”
model considered in the previous sub-section. Right graphs: results when adding the proprioceptive input in a condition where noise has been added to PPCp.

deteriorate the performance of the system with respect to the
baseline condition, in particular producing a longer RT (Fig. 8(a)), a
higher ER for the cases with high disparity (Fig. 8(b)), and a lower
CR (Fig. 8(c)). Instead, contrary to our expectation, the matching
condition did not lead to a relevant benefit. A closer observation
of Fig. 8(a) indicated that the latter result was due to a “ceiling
effect” for which the performance of the baseline system was
close to optimal, and hence could not be improved by a congruent
proprioception. In particular, this graph shows that the duration of
the RT for different disparity values requiring a certain number n
of mental-rotation steps is only slightly above n % 10 + 40 (where
40 is the RT with a zero disparity angle, roughly indicating the time
needed by the YES and NO units to accumulate the initial evidence
needed to reply). As the neural competition process underlying the
system decision making runs for 10 cycles for each mental rotation
cycle, this indicates that the system performance is indeed close to
being optimal.

So, why do empirical experiments show that a congruent
proprioception can support mental rotation? We formulated
the hypothesis for which congruent proprioception can improve
mental rotation when this is made difficult by different disturbing
factors, such as noisy initial images, unreliable mental rotation
processes, or noisy mappings from images to proprioception. To
test this hypothesis we re-ran the experiments adding noise to
PPCp to capture in an abstract way such disturbances. In particular,

we added a flat noise ranging in [—0.5, +0.5] to each unit of PPCp
at each rotation step (the activation of the units was cut within
[0, 1] to keep them in the usual range). The expectation of these
further tests was that noise added to PPCp would have deteriorated
the performance with respect to the baseline condition, and that
in this case a congruent proprioception could indeed improve the
mental rotation process.

Fig. 8 displays the results of the tests without noise (the
condition considered so far) and with noise. The graphs show
that noise increases RT and ER in the normal condition while
not affecting them much in the mismatch and match conditions.
Moreover, now congruent proprioception improves the mental
rotation process in terms of CR (t-test: Normal mean = 70.21,

Matchmean = 72.43, p < 0.01; Normal mean = 70.21,
Mismatchmean = 61.06, p < 0.001), thus confirming our
hypothesis.

To test the robustness of the results on the effects of pro-
prioception, we ran again the tests just described (noise added
to PPCp) with Gen1 and Gen2 datasets. The results, shown in
Fig. 9, confirm the overall effects found with the Recog dataset.
In particular, for the Gen1 dataset, a congruent and incongru-
ent proprioception tends to respectively improve and deteriorate
the performance of the model in terms of RT, ER and CR (t-test:
Normal mean = 67.48, Matchmean = 75.25, p < 0.01;
Normal mean = 67.48, Mismatch mean = 56.13, p < 0.001).
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Fig. 9. Behaviour of the model when noise has been added to PPCp and the model receives an additional proprioceptive input that is congruent (“Match”) or incongruent
(“Mismatch”) with the mental rotation direction (“Normal” refers to the model without additional proprioception). Left graphs: Gen1 object images. Right graphs: Gen2

object images.

For Gen2, only incongruent proprioception has a (detrimen-
tal) effect: this is present in terms of RT, ER and CR (t-test:
Normal mean = 62.52, Matchmean = 62.73, p = 7554;
Normal mean = 62.52, Mismatch mean = 57.04, p < 0.001).
The reason why proprioception does not help in Gen2 is likely that
most difficulties encountered by the model are not related to men-
tally rotating the objects, but to the discrimination of the match-
ing/mismatching points of the rotated object with the target (see
Section 3.3 for further details).

The result for which a proprioception coherent with mental
rotation improves it only in cases where mental rotation is made
difficult by noise sources represents, to the best of our knowledge,
a prediction of the model. This prediction could be tested in future
psychological experiments by tuning the difficulty of the mental
rotation task (e.g. by affecting the object images with noise).

3.3. Analysis of the internal functionality of the model

This sub-section presents some analyses of the internal func-
tioning of the model that produced the performance illustrated in
the previous sections. Fig. 10 illustrates the activation of key areas
of the model when it perceives sample images, containing differ-
ent target and rotated object couples, drawn from the Recog, Gen1
and Gen2 datasets. Fig. 10(a) shows a trial where the model gives
an answer for an image of the Recog dataset using five steps of

mental rotation. The graphs of the figure allow the visualisation
of key aspects of the functioning of the model during mental ro-
tation. PFCt encodes the edges of the target object image (in this
example it has a horizontal axis). POCi encodes the input to the
forward models: at step 1 this corresponds to the image of the ro-
tated object. POCp represents the predicted image after the men-
tal rotation (recall that at step 1 this corresponds to a no-rotation
movement, so the predicted image is as the one of POCi). PPCc en-
codes a combination of the desired wrist posture corresponding to
the target object orientation and of the wrist posture correspond-
ing to the rotated object: this combination is the basis to trigger the
proper movement at the level of PMCm. In the example, at step 1
PMCm encodes a left (anti-clockwise) mental rotation. At step 2
this mental rotation results in a predicted image of the “rotated
object” (POCp) now actually rotated anti-clockwise by 30°. Notice
the effects of the following rotations (PMCm) on the mental image
of the system encoded in POCp, e.g. at step 2 the model does not
rotate the object as it should. While the model is performing these
mental rotations, PFCtm computes the matching elements of the
mental image (POCp) with the target (PFCt). Notice how from step
1 to step 4 PFCtm involves a similar number of active units, and so
the system decision making process (PMCd) does not produce any
response. When at step 5 the PFCtm reveals a substantial matching,
the evidence in support of the YES reply accumulates, and once the
decision threshold is surpassed the related action is triggered (see
the activation of PMCd).
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Fig. 10. Activation of different areas of the model, indicated in the top row of each graph panel, while the system mentally rotates objects from the three datasets: (a) Recog.

(b) Gen1. (c) Gen2.
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Fig. 10(b) shows an example of mental rotation of an image
taken from Genl. The mental-rotation process and the final
decision made by the system are fully correct based on the capacity
of the system to properly rotate the object (see the sequence of
states of POCp during the mental rotation).

Fig. 10(c) reports an example with an image from Gen2. In this
case, the image is much more challenging, and after some attempts
to mentally rotate the object the system sees a strong resemblance
between the rotated object and the target image, and so produces
a “YES” reply before successfully rotating the object (in this case
the decision is correct by chance).

Fig. 11 reports the visualisation of some key areas of the
system in the case of mental rotation, utilising the same object con-
sidered in Fig. 10(a), but this time with the addiction of propriocep-
tive information to PPCp that is congruent or incongruent with the
mental rotation process. Fig. 11(a) shows how when propriocep-
tive information is congruent it can help the system to more re-
liably perform mental rotation, so taking four steps (Fig. 11(a))
rather than five (Fig. 10(a)) to successfully accomplish the mental
rotation. This better performance is due to the fact that through
congruent proprioception the system performs a better mental
simulation of the object/wrist rotation (comparing the activation of
PPCc in the two cases). Instead, Fig. 11(b) shows how an incongru-
ent proprioception leads the system to accomplish the full rotation
in a less efficient way (six steps) as the mental rotation processes
of the model are more erratic.

4. Conclusions

This work has presented a novel neuro-robotic model to study
the neural mechanisms possibly underlying mental rotation in hu-
mans. The model presents some innovations with respect to pre-
vious models that further refine the current hypotheses on such
mechanisms. First, starting from the approach followed in Caligiore
et al. (2010), the model macro-architecture was constrained with
knowledge on the areas of the human brain involved in mental
rotation obtained with brain imaging studies and other neurosci-
entific studies suggesting the mechanisms operating within them.
In this respect, the model was based on a more accurate analysis
of the involved brain areas. This led to the isolation of four key
brain areas forming the mental rotation system and to propose
four hypotheses on the key processes taking place within them.
The first two areas involve sensory associations. The first area of
these, the parieto-occipital cortex, is proposed to perform the men-
tal manipulation of visual representations of objects under the in-
fluence of information on planned rotation actions received from
motor areas. These processes rely on forward models that allow the
anticipation of the rotated image that would result from an ac-
tual rotation of a concrete object. The second area, the posterior-
parietal cortex, is involved in implementing the mapping between
the object images and the corresponding proprioception of the
limb possibly holding it (e.g., to compute the wrist orientation
corresponding to a certain orientation of the seen objects), and
to combine target postures with current postures to decide the
next mental rotation to perform. The third and fourth areas in-
volve frontal preparatory motor and executive cortex. In particular,
the third area, the premotor cortex, implements the preparation
of possible rotation movements that are then not executed with
limbs, but are used to drive internal mentally-imaged rotations.
The fourth and last area, the inferior lateral prefrontal cortex, su-
pervises the whole process by remembering the target object ori-
entation, by monitoring the success/failure of the mental rotation
process, and finally by triggering the final response of the system
in concert with the premotor cortex. Note that, for simplicity, for
each of these processes this description refers to particular brain
areas but the model has shown how all such processes are actually

based on a close interplay of a system of brain areas. For exam-
ple, the mental rotation process pivots on parietal-occipital cor-
tex but relies on a fundamental sensorimotor loop involving also
posterior-parietal and premotor areas. Similarly, the decision mak-
ing process pivots on the prefrontal cortex acting in concert with
the posterior-parietal and premotor areas.

The architecture we proposed and its functioning mechanisms
represent a further step with respect to previous computational
models (e.g., [nui & Ashizawa, 2011; Sasama et al., 2009) as these
focused on mental rotation mechanisms without relating them to
the other supporting processes such as matching processes and
decision making processes (Lamm et al., 2007). The architecture
also represents an innovation with respect to previous neuro-
robotic models (Seepanomwan et al., 2013a, 2013b) that did not
distinguish between the brain areas possibly performing visual and
proprioceptive processes and also used abstract monitoring and
decision making mechanisms.

A second innovation of the model in comparison to other neuro-
robotic models (Seepanomwan et al., 2013a, 2013b), shared with
other neural-network models (e.g., Sasama et al., 2009), involves
a more general rotation process capable of rotating different,
possibly novel objects (to the condition that these are represented
in terms of edges). This resembles the generalisation capabilities
of humans as shown by the classic mental rotation experiments
using unusual, novel object images (Hochberg & Gellman, 1977).
In this respect, the model has shown that, at least for the type
of 2D images used here to test the model, the training set can
be formed by very simple images (e.g., sets of dots) as these are
sufficient to allow the model to capture the spatial transformations
needed to perform the mental rotations. This agrees with the
proposal that spatial transformations are independent of the
objects involved (Terekhov & O'Regan, 2013). The model also
indicates that mental rotation of novel objects is easier when these
involve few distinctive features, whereas it might incur longer
reaction times and higher error rates with objects having several
matching features while rotated, as this causes problems for the
matching and decision making processes.

A third innovation of the model with respect to previous
models is represented by the mechanism used to monitor the
overall mental rotation process and to make the decision about the
response to produce. To this purpose, the model incorporated the
mutual inhibition model (Bogacz et al., 2006; Usher & McClelland,
2001) that allows a more accurate and biologically-plausible
reproduction of the decision making process of the participants
of target psychological experiments. This allowed the model to
reproduce the key findings of experiments on mental rotation
showing increasing reaction times and error rates in relation to
increasing disparities of the orientation angles of the rotated and
the target objects, whereas previous robotic models on mental
rotation reproduced less consistent reaction times and could not
reproduce error rates (see Seepanomwan et al., 2013a, 2013b).

Lastly, the use of the iCub robot platform shows that the
model scales to real-world testing scenarios and hardware, e.g. is
robust with respect to noise caused by the use of real images
and real noisy wrist movements, although this implies some
decrease of performance. Moreover, it allowed the performance of
experiments where the information from the robot proprioception
(wrist angle) was added to the mentally simulated proprioception,
thus allowing the proposal of a hypothesis and the reproduction
of the possible mechanisms underlying psychological experiments
where participants perform movements while mentally rotating
objects. This led us to show that overt movements congruent
with the performed mental rotation are useful only when mental
rotation processes are made difficult by uncertain images and
image-proprioception matching or by other sources of noise. To
the best of our knowledge, this represents a novel prediction of the
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Fig. 11. Activation of key areas of the model when it is supplied proprioceptive information in the case of mental rotation of the same object used in Fig. 10(a). (a) Case
where proprioception is congruent with mental rotation. (b) Case where proprioception is incongruent with mental rotation.

model that could be tested within empirical experiments, e.g. using
images having different levels of noise: the prediction would be
that congruent overt movements improve mental rotation with
an intensity increasing with the increase of the level of noise.
Notice how the model allowed the study of these phenomena as
its mental rotation processes are strongly embodied, i.e. they rely
on the same mechanisms underlying sensory and motor processes
(Borghi, Scorolli, Caligiore, Baldassarre, & Tummolini, 2013; Clark,
1997; Wilson, 2002). This facilitates the integration of mental and
sensorimotor processes and information.

Although the model solves technologically rather simple tasks,
the fact that it is embodied in a real agent makes it relevant for
robotics. Mental rotation can be seen as an instance of planning
and as such it could help to improve a robotic performance (Baldas-
sarre, 2003; Latombe, 1991; Lozano-Perez, 1987). Among planning

problems, mental rotation is peculiar in that it involves only two
possible actions, i.e. clock-wise and anti-clockwise rotations (at
least when 2D images are considered). Moreover, the transforma-
tions that it requires are independent of the objects being rotated
(the same holds for translations, Terekhov & O'Regan, 2013). As
shown with the model, these two features of mental rotation allow
the acquisition of general forward models to support planning pro-
cesses that in principle can work with any type of object. Moreover,
it also allows a mechanism for action selection (i.e., the mechanism
deciding where to rotate the object) based on the relation between
the rotated object and the target object, similar to cue-based plan-
ning strategies (Trullier, Wiener, Berthoz, & Meyer, 1997). In our
model, this mechanism relied on the abstraction and integration of
information related to the rotated and target objects, processed by
encoding their orientations in terms of corresponding wrist pro-
prioception. Mechanisms as simple and general as these might be
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used to inspire other planning strategies to solve manipulation
problems involving a low number of actions, e.g. not only rotations
(Ciancio, Zollo, Baldassarre, Caligiore, & Guglielmelli, 2013; Meola
et al., in press) but also linear translations in open space and 3D
mental rotations.

The model has some limitations that represent important chal-
lenges for future work. First, the information flow between the
system components is in part managed by non-neural mecha-
nisms. This involves the cyclic flow of information from the sen-
sory/proprioceptive components to the motor components and
vice versa, needed to implement sequences of mental rotation
steps. Although this process is commonly used in neural sys-
tems to implement planning (e.g., see Butz et al., 2003; Grush,
2004; Ziemke et al., 2005), it is not biologically plausible as the
information flows are not managed by neural-like mechanisms
(Baldassarre, 2003). To our knowledge, how repeated cycles of
planning could be managed by dynamical neural systems is an im-
portant, difficult, still open problem (but note that the human brain
might implement planning on the basis of rather different mech-
anisms; see Baldassarre, Mannella et al., 2013, for a biologically-
plausible model implementing “one-step planning”, i.e. triggering
one action based on its goal activation). Second, the mental rota-
tion process of the model now takes place at a coarse time and
space granularity: does the human brain instead perform mental
rotations in a continuous space and time? If so, this is an open
problem for future models on mental rotation. Third, at the mo-
ment the training of the system forward models, and the corre-
spondences between the perceived images and the related wrist
orientations, is based on simple images: this process might instead
rely on the robot actually rotating objects with the wrist and on the
corresponding cluttered images so produced. Fourth, we proposed
a mechanism explaining how overt movements affect mental ro-
tation that directly relies on the actual body motion and its effects
on mental simulation via proprioception. However, an alternative
explanation should be investigated in the future: overt movements
encoded in premotor cortex might directly interfere with the sim-
ulated movements encoded in the same area. Fifth, the focus of this
work was on the system-level integration of the multiple processes
involved in mental rotation, so we hardwired or simplified several
processes taking place within the single neural maps and compo-
nents of the model, in particular those within posterior parietal
cortex (PPC) combining the desired and mentally simulated wrist
posture. Now that we have formulated an overall hypothesis on
how the mental simulation processes work together, further work
might introduce specific learning processes operating within those
areas, e.g. to investigate the formation of neural receptive fields en-
coding input information in more interesting ways than those used
here (Ognibene, Rega, & Baldassarre, 2006). Sixth, the model con-
sidered only cortical areas of the brain, whereas, as mentioned in
the introduction, mental simulation also involves subcortical ar-
eas (e.g. basal-ganglia are involved in the selection of actions and
goals and this can be explicitly modelled, Baldassarre, 2002; Bal-
dassarre, Mannella et al., 2013; Mannella, Gurney, & Baldassarre,
2013). Last, the model attention processes are currently hardwired,
wherein they could be guided by bottom-up mechanisms based on
the features of the image and top-down mechanisms related to the
goals of the agent (Ognibene & Baldassare, 2015). Notwithstanding
these limitations, the model proposed gives a relevant contribu-
tion to the current state-of-the-art with respect to the formulation
of an integrated set of hypotheses on the neural mechanisms and
processes that may underlie mental rotation in humans.

Acknowledgements

This research received funds from EU funded projects “Robot-
Era” (FP7-1P-288899), “Poeticon++" (FP7-STREP-288382), “IM-
CLeVeR—Intrinsically Motivated Cumulative Learning Versatile

Robots” (FP7-1P-231722). Seepanonwam’s research was supported
with a Ph.D. grant from the Thai Government. We thank Bruno
Castro da Silva for helping to elaborate the initial ideas on
the system components supporting generalised mental rotation
processes, Giovanni Pezzulo for discussing some aspects of the
system decision making components, and an anonymous reviewer
for suggesting the possibility, reported in the “Conclusions”
section, that premotor activation due to overt movements might
affect mental rotation directly within premotor cortex rather than
within parietal cortex as in the model.

References

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of
functionally segregated circuits linking basal ganglia and cortex. Annual Review
of Neuroscience, 9(1), 357-381.

Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex.
Annual Review of Neuroscience, 25, 189-220.

Baldassarre, G. (2001). Planning with neural networks and reinforcement learning.
University of Essex, Department of Coputer Science.

Baldassarre, G. (2002). A modular neural-network model of the basal ganglia’s role
in learning and selecting motor behaviours. Cognitive Systems Research, 3(1),

-13.

Baldassarre, G. (2003). Forward and bidirectional planning based on reinforcement
learning and neural networks in a simulated robot. In M. Butz, O. Sigaud, & P.
Gérard (Eds.), Anticipatory behavior in adaptive learning systems (pp. 179-200).
Berlin: Springer.

Baldassarre, G., Caligiore, D., & Mannella, F. (2013). The hierarchical organisation
of cortical and basal-ganglia systems: a computationally-informed review and
integrated hypothesis. In G. Baldassarre, & M. Mirolli (Eds.), Computational and
robotic models of the hierarchical organization of behavior (pp. 237-270). Berlin,
Heidelberg: Springer.

Baldassarre, G., Mannella, F., Fiore, V. G., Redgrave, P., Gurney, K., & Mirolli, M.
(2013). Intrinsically motivated action-outcome learning and goal-based action
recall: a system-level bio-constrained computational model. Neural Networks,
41, 168-187.

Barto, A. G., & Sutton, R. (1998). Reinforcement learning: an introduction. MIT Press.

Bogacz, R. (2007). Optimal decision-making theories: linking neurobiology with
behaviour. Trends in Cognitive Sciences, 11(3), 118-125.

Bogacz, R, Brown, E., Moelhlis, ]., Holmes, P., & Cohen, ]. D. (2006). The physics of
optimal decision making: a formal analysis of models of performance in two-
alternative forced-choice tasks. Psychological Review, 113, 700.

Borghi, A. M., & Cimatti, F. (2010). Embodied cognition and beyond: acting and
sensing the body. Neuropsychologia, 48(3), 763-773.

Borghi, A. M., Scorolli, C., Caligiore, D., Baldassarre, G., & Tummolini, L. (2013). The
embodied mind extended: using words as social tools. Frontiers in Psychology,
1(4), 214.

Braddick, O. ]., O'Brien, J. M., Wattam-Bell, ]., Atkinson, ]., Hartley, T., & Turner, R.
(2001). Brain areas sensitive to coherent visual motion. Perception, 30(1),61-72.

Butz, M. V,, Sigaud, O., & Gérard, P. (Eds.) (2003). Anticipatory behavior in adaptive
learning systems: foundations, theories, and systems. Vol. 2684. Berlin: Springer.

Caligiore, D., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010). TRoPICALS:
A computational embodied neuroscience model of compatibility effects.
Psychological Review, 117, 1188-1228.

Caligiore, D., Borghi, A., Parisi, D., Ellis, R., Cangelosi, A., & Baldassarre, G. (2013).
How affordances associated with a distractor object affect compatibility effects:
A study with the computational model TRoPICALS. Psychological Research,77(1),
7-19.

Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M., & Baldassarre, G.
(2008). Using motor babbling and Hebb rules for modeling the development of
reaching with obstacles and grasping. In R. Dillmann, C. Maloney, G. Sandini, T.
Asfour, G. Cheng, G. Metta, & A. Ude (Eds.), International conference on cognitive
systems (CogSys2008) (pp. E1-E8). Karlsruhe, Germany: University of Karlsruhe.

Caligiore, D., Parisi, D., & Baldassarre, G. (2014). Integrating reinforcement learning,
equilibrium points and minimum variance to understand the development of
reaching: A computational model. Psychological Review, 121, 389-421.

Caligiore, D., Pezzulo, G., Miall, R. C., & Baldassarre, G. (2013). The contribution of
brain sub-cortical loops in the expression and acquisition of action understand-
ing abilities. Neuroscience & Biobehavioral Reviews, 37(10), 2504-2515.

Cangelosi, A., & Schlesinger, M. (2015). Developmental robotics. Boston, MA: MIT

Press.

Canny, F. . (1986). A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8(6), 679-698.

Carpenter, P. A, Just, M. A, Keller, T. A., Eddy, W., & Thulborn, K. (1999). Graded
functional activation in the visuospatial system with the amount of task
demand. Journal of Cognitive Neuroscience, 11(1), 9-24.

Chu, M,, &Kita, S. (2011). The nature of gestures’ beneficial role in spatial problem
solving. Journal of Experimental Psychology: General, 140(1), 102.

Ciancio, A. L., Zollo, L., Baldassarre, G., Caligiore, D., & Guglielmelli, E. (2013). The role
of learning and kinematic features in dexterous manipulation: a comparative
study with two robotic hands. International Journal of Advanced Robotic Systems,
10,e1-21.


http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref1
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref2
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref3
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref4
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref5
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref6
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref7
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref8
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref9
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref10
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref11
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref12
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref13
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref14
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref15
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref16
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref17
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref18
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref19
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref20
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref21
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref22
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref23
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref24

K. Seepanomwan et al. / Neural Networks 72 (2015) 31-47 47

Clark, A. (1997). Being there: putting brain, body, and world together again. Boston,
MA: MIT Press.

Cohen, M. S., & Bookheimer, S. Y. (1994). Localization of brain function using
magnetic resonance imaging. Trends Neurosciences, 17, 268-276.

Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual
Review of Neuroscience, 22(1), 319-349.

Corballis, M. C., & McLaren, R. (1982). Interaction between perceived and imagined
rotation. Journal of Experimental Psychology: Human Perception and Performance,
8(2), 215.

Di Nuovo, A., De La Cruz, V. M., & Marocco, D. (2013). Special issue on artificial
mental imagery in cognitive systems and robotics. Adaptive Behavior, 21(4),
217-221.

Di Nuovo, A. G., Marocco, D., Cangelosi, A., De La Cruz, V. M., & Di Nuovo, S. (2012).

Mental practice and verbal instructions execution: A cognitive robotics study.
In The 2012 international joint conference on neural networks. [J[CNN2012.

Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001).
A solution to the simultaneous localization and map building (SLAM) problem.
IEEE Transactions on Robotics and Automation, 17(3), 229-241.

Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning
and motor control. Current Opinion in Neurobiology, 10(6), 732-739.

Erlhagen, W., & Schéner, G. (2002). Dynamic field theory of movement preparation.
Psychological Review, 109, 545.

Fukumi, M., Omatu, S., & Nishikawa, Y. (1997). Rotation-invariant neural pattern
recognition system estimating a rotation angle. IEEE Transactions on Neural
Networks, 8(3), 568-581.

Fukumi, M., Omatu, S., Takeda, F., & Kosaka, T. (1992). Rotation-invariant
neural pattern recognition system with application to coin recognition. IEEE
Transactions on Neural Networks, 3(2), 272-279.

Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., & Massey, . T. (1989).
Mental rotation of the neuronal population vector. Science, 243, 234-236.

Gibson, ]. J. (1986). The ecological approach to visual perception. Boston, MA:
Houghton Mifflin.

Grafton, S. T., Arbib, M. A,, Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp
representations in humans by positron emission tomography: 2. Observation
compared with imagination. Experimental Brain Research, 112(2), 103-111.

Grush, R. (2004). The emulation theory of representation: motor control, imagery,
and perception. Behavioral and Brain Sciences, 27(3), 377-396.

Harris, I. M., & Miniussi, C. (2003). Parietal lobe contribution to mental rotation
demonstrated with rTMS. Journal of Cognitive Neuroscience, 15, 315-323.

Hochberg, J., & Gellman, L. (1977). The effect of landmark features on mental
rotation times. Memory Cognition, 5, 23-26.

Hubel, D. H. (1988). Eye, brain and vision. New York, NY: Scientific American Books.

Inui, T., & Ashizawa, M. (2011). Temporo-parietal network model for 3D mental
rotation. In R. Wang, & F. Gu (Eds.), Advances in cognitive neurodynamics (II)
(pp. 91-95). Netherlands: Springer.

Jeannerod, M., Arbib, M. A, Rizzolatti, G., & Sakata, H. (1995). Grasping objects: The
cortical mechanisms of visuomotor transformation. Trends in Neurosciences,
18(7), 314-320.

Johnston, S., Leek, E. C., Atherton, C., Thacker, N., & Jackson, A. (2004). Functional
contribution of medial premotor cortex to visuo-spatial transformation in
humans. Neuroscience Letters, 355, 209-212.

Khatib, 0.(1986). Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research, 5(1), 90-98.

Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.

Kosslyn, S. M. (1996). Image and the brain. The resolution of the imagery debate.
Cambridge, MA: MIT Press.

Kosslyn, S. M., Digirolamo, G. ]J., Thompson, W. L., & Alpert, N. M. (1998). Mental
rotation of objects versus hands: neural mechanisms revealed by positron
emission tomography. Psychophysiology, 35(2), 151-161.

Kulkarni, A., Yap, A. C,, & Byars, P. (1990). Neural networks for invariant object
recognition. In Proceedings of the 1990 symposium on applied computing.

Lamm, C., Windischberger, C., Moser, E., & Bauer, H. (2007). The functional role
of the dorso-lateral premotor cortex during mental rotation An event- related
fMRI study separating cognitive processing steps using a novel task paradigm.
Neurolmage, 36(4), 1374-1386.

Latombe, J.-C. (1991). The springer international series in engineering and computer
science: Vol. 124. Robot motion planning. Berlin: Springer.

Lozano-Perez, T. (1987). A simple motion-planning algorithm for general robot
manipulators. IEEE Journal of Robotics and Automation, 3(3), 224-238.

Mannella, F., Gurney, K., & Baldassarre, G. (2013). The nucleus accumbens as a
nexus between values and goals in goal-directed behavior: a review and a new
hypothesis. Frontiers in Behavioral Neuroscience, 7, e1-29.

Masehian, E., & Sedighizadeh, D. (2007). Classic and heuristic approaches in
robot motion planning—a chronological review. World Academy of Science,
Engineering and Technology, 29(1), 101-106.

Meola, V.C,, Caligiore, D., Sperati, V., Zollo, L., Ciancio, A.L., Taffoni, F., Guglielmelli, E.,
& Baldassarre, G. Interplay of discrete and rhythmic manipulation movements
during development: A policy-search reinforcement-learning robot model. I[EEE
Transactions on Autonomous Mental Development (in press).

Metta, G., Sandini, G., Vernon, D., Natale, L., & Nori, F. (2008). The iCub humanoid
robot: an open platform for research in embodied cognition. In Proceedings of
the 8th workshop on performance metrics for intelligent systems.

Meyer, J.-A., & Filliat, D. (2003). Map-based navigation in mobile robots—II. A review
of map-learning and path-planning strategies. Cognitive Systems Research, 4(4),
283-317.

Michelon, P., Vettel, J. M., & Zacks, ]J. M. (2006). Lateral somatotopic organization
during imagined and prepared movements. Journal of Neurophysiology, 95,
811-822.

Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and
cognitive circuits. Brain Research Reviews, 31(2-3), 236-250.

Ognibene, D., & Baldassare, G. (2015). Ecological active vision: four bio-inspired
p11nc1p1es to integrate bottom-up and adaptive top-down attention tested
with a simple camera-arm robot. IEEE Transactions on Autonomous Mental
Development, 7(1), 3-25.

Ognibene, D., Rega, A., & Baldassarre, G. (2006). A model of reaching that integrates
reinforcement learning and population encoding of postures. In S. Nolfi, G
Baldassarre, R. Calabretta, J. Hallam, D. Marocco, J.-A. Meyer, O. Miglino, & D.
Parisi (Eds.), Lecture notes in artificial intelligence: 4095. From animals to animats
9: proceedings of the ninth international conference on the simulation of adaptive
behavior, (SAB2006), (pp. 381-393). Berlin: Springer Verlag.

Pouget, A., Dayan, P., & Zemel, R. S. (2003). Inference and computation with
population codes. Annual Review of Neuroscience, 26(1), 381-410.

Pouget, A., & Sejnowski, T. J. (1997). Spatial transformations in the parietal cortex
using basis functions. Journal of Cognitive Neuroscience, 9(2), 222-237.

Richter, W., Somorjai, R.,, Summers, R, Jarmasz, M., Menon, R. S., Gati, J. S.,... Kim, S.-
G. (2000). Motor area activity during mental rotation studied by time-resolved
single-trial fMRI. Journal of Cognitive Neuroscience, 12(2), 310-320.

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of
Neuroscience, 27, 169-192.

Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the
recognition of motor actions. Cognitive Brain Research, 3(2), 131-141.

Rizzolatti, G., Luppino, G., & Matelli M. (1998). The organization of the
cortical motor system: new concepts. Electroencephalography and Clinical
Neurophysiology, 106, 283-296.

Rowley, H. A, Baluja, S., & Kanade, T. (1998). Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1), 23-38.
Salinas, E., & Abbott, L. (1996). A model of multiplicative neural responses in parietal

cortex. Proceedings of the National Academy of Sciences, 93(21), 11956-11961.

Sandini, G., Metta, G., & Vernon, D. (2007). The icub cognitive humanoid robot: An
open-system research platform for enactive cognition. In 50 years of artificial
intelligence (pp. 358-369). Berlin, Heidelberg: Springer.

Sasama, T., Mitsumoto, H., Yoneda, K., & Tamura, S. (2009). Mental rotation by neural
network. In Fifth international conference on intelligent information hiding and
multimedia signal processing, ITH-MSP2009.

Seepanomwan, K. Caligiore, D., Baldassarre, G. & Cangelosi, A. (2013a). A
cognitive robotic model of mental rotation. In IEEE symposium on computational
intelligence, cognitive algorithms, mind, and brain. CCMB2013.

Seepanomwan, K., Caligiore, D., Baldassarre, G., & Cangelosi, A. (2013b). Modelling
mental rotation in cognitive robots. Adaptive Behavior, 21(4), 299-312.

Shepard, R., & Metzler, J. (1971). Mental rotation of three dimensional objects.
Science, 171(972),701-703.

Snyder, L. H., Grieve, K. L., Brotchie, P., & Andersen, R. A. (1998). Separate body- and
world-referenced representations of visual space in parietal cortex. Nature, 394,
887-891.

Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos-Baumann, A.
0., Frith, C. D., & Frackowiak, R. S. (1995). Functional anatomy of the mental
representation of upper extremity movements in healthy subjects. Journal of
Neurophysiology, 73(1), 373-386.

Terekhov, A.V., & O'Regan, K. (2013). Space as an invention of biological organisms.
arXiv Preprint no. 1308.2124, pp. 1-15.

Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., & Nori, F. (2008). An
open-source simulator for cognitive robotics research: the prototype of the iCub
humanoid robot simulator. In Proceedings of the 8th workshop on performance
metrics for intelligent systems.

Trullier, O., Wiener, S. L, Berthoz, A., & Meyer, J.-A. (1997). Biologically based
artificial navigation systems: review and prospects. Progress in Neurobiology,
51(5), 483-544.

Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object
categorization. Visual Cognition, 8, 769-800.

Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: The
leaky competing accumulator model. Psychological Review, 108, 550-592.

Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation.
Cognition, 68(1), 77-94.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and
Review, 9(4), 625-636.

Wohlschldger, A. (2001). Mental object rotation and the planning of hand
movements. Perception & Psychophysics, 63, 709-718.

Wohlschldger, A., & Wohlschldger, A. (1998). Mental and manual rotation. Journal
of Experimental Psychology: Human Perception and Performance, 24(2), 397-412.

Zacks, J. (2008). Neuroimaging studies of mental rotation: a meta-analysis and
review. Journal of Cognitive Neuroscience, 20(1), 1-19.

Ziemke, T., Jirenhed, D.-A., & Hesslow, G. (2005). Internal simulation of perception:
a minimal neuro-robotic model. Neurocomputing, 68(0), 85-104.


http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref25
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref26
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref27
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref28
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref29
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref31
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref32
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref33
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref34
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref35
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref36
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref37
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref38
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref39
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref40
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref41
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref42
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref43
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref44
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref45
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref46
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref47
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref48
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref49
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref51
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref52
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref53
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref54
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref55
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref58
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref59
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref60
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref61
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref62
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref63
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref64
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref65
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref66
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref67
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref68
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref69
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref70
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref71
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref74
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref75
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref76
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref77
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref80
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref81
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref82
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref83
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref84
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref85
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref86
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref87
http://refhub.elsevier.com/S0893-6080(15)00185-9/sbref88

	Generalisation, decision making, and embodiment effects in mental rotation: A neurorobotic architecture tested with a humanoid robot
	Introduction
	Brain areas and neural mechanisms involved in mental rotation

	Methods
	The iCub humanoid robot
	The stimuli
	The mental rotation task
	Model architecture and functioning of its components
	Model functioning
	Model learning

	Results and discussion
	Mental rotation and generalisation
	The role of overt movements during mental rotation and a prediction of the model
	Analysis of the internal functionality of the model

	Conclusions
	Acknowledgements
	References


