21 research outputs found

    A Role for the Motor System in Binding Abstract Emotional Meaning

    Get PDF
    Sensorimotor areas activate to action- and object-related words, but their role in abstract meaning processing is still debated. Abstract emotion words denoting body internal states are a critical test case because they lack referential links to objects. If actions expressing emotion are crucial for learning correspondences between word forms and emotions, emotion word–evoked activity should emerge in motor brain systems controlling the face and arms, which typically express emotions. To test this hypothesis, we recruited 18 native speakers and used event-related functional magnetic resonance imaging to compare brain activation evoked by abstract emotion words to that by face- and arm-related action words. In addition to limbic regions, emotion words indeed sparked precentral cortex, including body-part–specific areas activated somatotopically by face words or arm words. Control items, including hash mark strings and animal words, failed to activate precentral areas. We conclude that, similar to their role in action word processing, activation of frontocentral motor systems in the dorsal stream reflects the semantic binding of sign and meaning of abstract words denoting emotions and possibly other body internal states

    How to achieve synergy between medical education and cognitive neuroscience? An exercise on prior knowledge in understanding

    Get PDF
    A major challenge in contemporary research is how to connect medical education and cognitive neuroscience and achieve synergy between these domains. Based on this starting point we discuss how this may result in a common language about learning, more educationally focused scientific inquiry, and multidisciplinary research projects. As the topic of prior knowledge in understanding plays a strategic role in both medical education and cognitive neuroscience it is used as a central element in our discussion. A critical condition for the acquisition of new knowledge is the existence of prior knowledge, which can be built in a mental model or schema. Formation of schemas is a central event in student-centered active learning, by which mental models are constructed and reconstructed. These theoretical considerations from cognitive psychology foster scientific discussions that may lead to salient issues and questions for research with cognitive neuroscience. Cognitive neuroscience attempts to understand how knowledge, insight and experience are established in the brain and to clarify their neural correlates. Recently, evidence has been obtained that new information processed by the hippocampus can be consolidated into a stable, neocortical network more rapidly if this new information fits readily into a schema. Opportunities for medical education and medical education research can be created in a fruitful dialogue within an educational multidisciplinary platform. In this synergetic setting many questions can be raised by educational scholars interested in evidence-based education that may be highly relevant for integrative research and the further development of medical education

    MUC (Memory, Unification, Control): A model on the neurobiology of language beyond single word processing

    No full text
    Item does not contain fulltextA neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content
    corecore