2,973 research outputs found

    Phonetic variability and grammatical knowledge: an articulatory study of Korean place assimilation.

    Get PDF
    The study reported here uses articulatory data to investigate Korean place assimilation of coronal stops followed by labial or velar stops, both within words and across words. The results show that this place-assimilation process is highly variable, both within and across speakers, and is also sensitive to factors such as the place of articulation of the following consonant, the presence of a word boundary and, to some extent, speech rate. Gestures affected by the process are generally reduced categorically (deleted), while sporadic gradient reduction of gestures is also observed. We further compare the results for coronals to our previous findings on the assimilation of labials, discussing implications of the results for grammatical models of phonological/phonetic competence. The results suggest that speakers’ language-particular knowledge of place assimilation has to be relatively detailed and context-sensitive, and has to encode systematic regularities about its obligatory/variable application as well as categorical/gradient realisation

    "Irregular" Verbs in Korean Revisited

    Get PDF
    A number of Korean verbs 1 do not follow the general phonological rules in their conjugation. However, the patternedness of their "irregularity" has long been noted by most grammarians. Thus even the earliest analyses set up different "classes" of "irregular" verbs (Choy 1937- 1971, Martin 1954, He 1965- 1972, C-W Kim 1967)2. Furthermore it was well known that many of the irregularities were due to some earlier historical processes. More recently in applying the generative theory, many linguists (C-W Kim 1970, Chag-yun Kim 1971, Lee 1973, Cook 1973) have come to believe that most, if not all, of these "anomalous" verbs are not really exceptions to some fixed rules but that they behave differently because they have different underlying forms. Thus superficially identical forms of "regular" and "irregular" verbs are thought to be a direct result of certain phonological rules which neutralize them in a well-defined environment. This paper purports to review some of the "regular" solutions thus far given and to present my own claim on the underlying representations of the "irregular" verbs and the phonlogical rules required to derive their phonetic representations. Choy(l937-71) gives twelve classes of verbs which show anomaly either in the shape of their stems or in the affixes that are attached to them. I shall group them into five sections in each of which related processes will be discussed

    Self-similar correlation function in brain resting-state fMRI

    Full text link
    Adaptive behavior, cognition and emotion are the result of a bewildering variety of brain spatiotemporal activity patterns. An important problem in neuroscience is to understand the mechanism by which the human brain's 100 billion neurons and 100 trillion synapses manage to produce this large repertoire of cortical configurations in a flexible manner. In addition, it is recognized that temporal correlations across such configurations cannot be arbitrary, but they need to meet two conflicting demands: while diverse cortical areas should remain functionally segregated from each other, they must still perform as a collective, i.e., they are functionally integrated. Here, we investigate these large-scale dynamical properties by inspecting the character of the spatiotemporal correlations of brain resting-state activity. In physical systems, these correlations in space and time are captured by measuring the correlation coefficient between a signal recorded at two different points in space at two different times. We show that this two-point correlation function extracted from resting-state fMRI data exhibits self-similarity in space and time. In space, self-similarity is revealed by considering three successive spatial coarse-graining steps while in time it is revealed by the 1/f frequency behavior of the power spectrum. The uncovered dynamical self-similarity implies that the brain is spontaneously at a continuously changing (in space and time) intermediate state between two extremes, one of excessive cortical integration and the other of complete segregation. This dynamical property may be seen as an important marker of brain well-being both in health and disease.Comment: 14 pages 13 figures; published online before print September 2

    Exploring Consumers’ Attitudes of Smart TV Related Privacy Risks

    Get PDF
    A number of privacy risks are inherent in the Smart TV ecosystem. It is likely that many consumers are unaware of these privacy risks. Alternatively, they might be aware but consider the privacy risks acceptable. In order to explore this, we carried out an online survey with 200 participants to determine whether consumers were aware of Smart TV related privacy risks. The responses revealed a meagre level of awareness. We also explored consumers’ attitudes towards specific Smart TV related privacy risks. We isolated a number of factors that influenced rankings and used these to develop awareness-raising messages. We tested these messages in an online survey with 155 participants. The main finding was that participants were generally unwilling to disconnect their Smart TVs from the Internet because they valued the Smart TV’s Internet functionality more than their privacy. We subsequently evaluated the awareness-raising messages in a second survey with 169 participants, framing the question differently. We asked participants to choose between five different Smart TV Internet connection options, two of which retained functionality but entailed expending time and/or effort to preserve privacy

    Lattice QCD Thermodynamics on the Grid

    Full text link
    We describe how we have used simultaneously O(103){\cal O}(10^3) nodes of the EGEE Grid, accumulating ca. 300 CPU-years in 2-3 months, to determine an important property of Quantum Chromodynamics. We explain how Grid resources were exploited efficiently and with ease, using user-level overlay based on Ganga and DIANE tools above standard Grid software stack. Application-specific scheduling and resource selection based on simple but powerful heuristics allowed to improve efficiency of the processing to obtain desired scientific results by a specified deadline. This is also a demonstration of combined use of supercomputers, to calculate the initial state of the QCD system, and Grids, to perform the subsequent massively distributed simulations. The QCD simulation was performed on a 163×416^3\times 4 lattice. Keeping the strange quark mass at its physical value, we reduced the masses of the up and down quarks until, under an increase of temperature, the system underwent a second-order phase transition to a quark-gluon plasma. Then we measured the response of this system to an increase in the quark density. We find that the transition is smoothened rather than sharpened. If confirmed on a finer lattice, this finding makes it unlikely for ongoing experimental searches to find a QCD critical point at small chemical potential

    Fully compressive tides in galaxy mergers

    Full text link
    The disruptive effect of galactic tides is a textbook example of gravitational dynamics. However, depending on the shape of the potential, tides can also become fully compressive. When that is the case, they might trigger or strengthen the formation of galactic substructures (star clusters, tidal dwarf galaxies), instead of destroying them. We perform N-body simulations of interacting galaxies to quantify this effect. We demonstrate that tidal compression occurs repeatedly during a galaxy merger, independently of the specific choice of parameterization. With a model tailored to the Antennae galaxies, we show that the distribution of compressive tides matches the locations and timescales of observed substructures. After extending our study to a broad range of parameters, we conclude that neither the importance of the compressive tides (~15% of the stellar mass) nor their duration (~ 10 Myr) are strongly affected by changes in the progenitors' configurations and orbits. Moreover, we show that individual clumps of matter can enter compressive regions several times in the course of a simulation. We speculate that this may spawn multiple star formation episodes in some star clusters, through e.g., enhanced gas retention.Comment: 17 pages, 16 figures, accepted for publication in Ap

    A Grammar Correction Algorithm – Deep Parsing and Minimal Corrections for a Grammar Checker

    Get PDF
    International audienceThis article presents the central algorithm of an open system for grammar checking, based on deep parsing. The grammatical specification is a context-free grammar with flat feature structures. After a shared-forest analysis where feature agreement constraints are relaxed, error detection globally minimizes the number of corrections and alternative correct sentences are automatically proposed in an order of plausibility reflecting the number of changes made to the original sentence

    Grammaires d'erreur – correction grammaticale avec analyse profonde et proposition de corrections minimales

    Get PDF
    posterInternational audienceNous présentons un système de correction grammatical ouvert, basé sur des analyses syntaxiques profondes. La spécification grammaticale est une grammaire hors-contexte équipée de structures de traits plates. Après une analyse en forêt partagée où les contraintes d'accord de traits sont relâchées, la détection d'erreur minimise globalement les corrections à effectuer et des phrases alternatives correctes sont automatiquement proposées
    corecore