57 research outputs found

    MCR XVII. Three Types of MCRs and the Libraries – Their Chemistry of Natural Events and Preparative Chemistry

    Get PDF
    The one-pot Multicomponent Reactions (MCRs)1 convert more than two different components into their products with at least two new chemical bonds, and the products contain all educts or at least some parts of them. Many chemical reactions have several, but not all, aspects of the MCRs. Three different basic types (I–III) and two subclasses (A and B) of MCRs can take place. Chemistry had started in the nature of our world roughly 4.6 billion years ago, including MCRs of the types I and II, forming libraries of many different products. A little later, the living cells came into existence, and their biochemical MCRs of all three types started. In their various local parts their biochemical products are selectively formed by their enzyme-assisted procedures, but many of their MCRs belong to type III. The preparative chemistry of MCRs started in the middle of the last century, when the first equilibrating but isolateable 3CR products of type IB were formed. The pre-final reactions of type I form compounds, which react further and form their final products irreversibly by MCRs of type II. The type IIA products are usually heterocycles, whereas those of type IIB are generally products of isocyanides. The U-4CR of type IIB was introduced and this led to a new preparative MCR chemistry. Their educts and intermediate products equilibrate (type IA) and undergo irreversible CII → CIV &alpha,-additions of the isocyanides, followed by a variety of rearrangements into their final products (type IIB). In recent years, unions of higher numbers of components were introduced, forming even more diverse types of products. The MCR libraries were proposed in 1961, and since 1995 this chemistry has become an essential part of the chemical research in industrial search for new desirable products. This methodology requires much less work than all previous methods and proceeds many orders of magnitude faster

    MCR XVII. Three Types of MCRs and the Libraries – Their Chemistry of Natural Events and Preparative Chemistry

    Get PDF
    The one-pot Multicomponent Reactions (MCRs)1 convert more than two different components into their products with at least two new chemical bonds, and the products contain all educts or at least some parts of them. Many chemical reactions have several, but not all, aspects of the MCRs. Three different basic types (I–III) and two subclasses (A and B) of MCRs can take place. Chemistry had started in the nature of our world roughly 4.6 billion years ago, including MCRs of the types I and II, forming libraries of many different products. A little later, the living cells came into existence, and their biochemical MCRs of all three types started. In their various local parts their biochemical products are selectively formed by their enzyme-assisted procedures, but many of their MCRs belong to type III. The preparative chemistry of MCRs started in the middle of the last century, when the first equilibrating but isolateable 3CR products of type IB were formed. The pre-final reactions of type I form compounds, which react further and form their final products irreversibly by MCRs of type II. The type IIA products are usually heterocycles, whereas those of type IIB are generally products of isocyanides. The U-4CR of type IIB was introduced and this led to a new preparative MCR chemistry. Their educts and intermediate products equilibrate (type IA) and undergo irreversible CII → CIV &alpha,-additions of the isocyanides, followed by a variety of rearrangements into their final products (type IIB). In recent years, unions of higher numbers of components were introduced, forming even more diverse types of products. The MCR libraries were proposed in 1961, and since 1995 this chemistry has become an essential part of the chemical research in industrial search for new desirable products. This methodology requires much less work than all previous methods and proceeds many orders of magnitude faster

    Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components

    Get PDF
    A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato(Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration)and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome

    Characterization of Two Malaria Parasite Organelle Translation Elongation Factor G Proteins: The Likely Targets of the Anti-Malarial Fusidic Acid

    Get PDF
    Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P. falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria

    Update on chloroplast research

    Get PDF
    Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants

    Proteome Dynamics during Plastid Differentiation in Rice

    No full text
    We have analyzed proteome dynamics during light-induced development of rice (Oryza sativa) chloroplasts from etioplasts using quantitative two-dimensional gel electrophoresis and tandem mass spectrometry protein identification. In the dark, the etioplast allocates the main proportion of total protein mass to carbohydrate and amino acid metabolism and a surprisingly high number of proteins to the regulation and expression of plastid genes. Chaperones, proteins for photosynthetic energy metabolism, and enzymes of the tetrapyrrole pathway were identified among the most abundant etioplast proteins. The detection of 13 N-terminal acetylated peptides allowed us to map the exact localization of the transit peptide cleavage site, demonstrating good agreement with the prediction for most proteins. Based on the quantitative etioplast proteome map, we examined early light-induced changes during chloroplast development. The transition from heterotrophic metabolism to photosynthesis-supported autotrophic metabolism was already detectable 2 h after illumination and affected most essential metabolic modules. Enzymes in carbohydrate metabolism, photosynthesis, and gene expression were up-regulated, whereas enzymes in amino acid and fatty acid metabolism were significantly decreased in relative abundance. Enzymes involved in nucleotide metabolism, tetrapyrrole biosynthesis, and redox regulation remained unchanged. Phosphoprotein-specific staining at different time points during chloroplast development revealed light-induced phosphorylation of a nuclear-encoded plastid RNA-binding protein, consistent with changes in plastid RNA metabolism. Quantitative information about all identified proteins and their regulation by light is available in plprot, the plastid proteome database (http://www.plprot.ethz.ch)
    corecore