160 research outputs found

    Amplitude analysis and branching fraction measurement of the decay Ds+π+π0π0D_{s}^{+} \to \pi^{+}\pi^{0}\pi^{0}

    Full text link
    Using a data set corresponding to an integrated luminosity of 6.32~fb1\rm fb^{-1} recorded by the BESIII detector at center-of-mass energies between 4.178 and 4.226~GeV, an amplitude analysis of the decay Ds+π+π0π0D_{s}^{+} \to \pi^{+}\pi^{0}\pi^{0} is performed, and the relative fractions and phases of different intermediate processes are determined. The absolute branching fraction of the decay Ds+π+π0π0D_{s}^{+} \to \pi^{+}\pi^{0}\pi^{0} is measured to be (0.50±0.04stat±0.02syst)%(0.50\pm 0.04_{\text{stat}}\pm 0.02_{\text{syst}})\%. The absolute branching fraction of the intermediate process Ds+f0(980)π+,f0(980)π0π0D_{s}^{+} \to f_0(980)\pi^{+}, f_0(980)\to\pi^{0}\pi^{0} is determined to be (0.21±0.03stat±0.03syst)%(0.21\pm 0.03_{\text{stat}}\pm 0.03_{\text{syst}})\%

    Study of e+e−→2(pp¯) at center-of-mass energies between 4.0 and 4.6 GeV

    Get PDF
    Using data taken at 23 center-of-mass energies between 4.0 and 4.6 GeV with the BESIII detector at the Beijing Electron Positron Collider and with a total integrated luminosity of approximately 15 fb-1, the process e+e-→2(pp¯) is studied for the first time. The Born cross sections for e+e-→2(pp¯) are measured, and no significant structure is observed in the lineshape. The baryon pair (pp and p¯p¯) invariant mass spectra are consistent with phase space, therefore no hexaquark or di-baryon state is found

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    BACKGROUND: The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. METHODS: For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15-95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. FINDINGS: The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15-39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0-0) and 0·603 (0·400-1·00) standard drinks per day, and the NDE varied between 0·002 (0-0) and 1·75 (0·698-4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0-0·403) to 1·87 (0·500-3·30) standard drinks per day and an NDE that ranged between 0·193 (0-0·900) and 6·94 (3·40-8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3-65·4) were aged 15-39 years and 76·9% (73·0-81·3) were male. INTERPRETATION: There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. FUNDING: Bill & Melinda Gates Foundation

    Amplitude analysis and branching fraction measurement of Ds+→K−K+π+π0

    Get PDF
    The first amplitude analysis of the decay Ds+→K-K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb-1, collected with the BESIII detector at e+e- center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of Ds+→K-K+π+π0 decay is measured to be (5.42±0.10stat±0.17syst)

    Observation of a Near-Threshold Structure in the K+ Recoil-Mass Spectra in e+⁢e−→K+⁢(D−s⁢D*0+D*− s⁢D0)

    Get PDF
    We report a study of the processes of e+⁢e− →K+⁢D− s⁢D*0 and K+⁢D*−s⁢D0 based on e+⁢e− annihilation samples collected with the BESIII detector operating at BEPCII at five center-of-mass energies ranging from 4.628 to 4.698 GeV with a total integrated luminosity of 3.7 fb−1. An excess of events over the known contributions of the conventional charmed mesons is observed near the D−s⁢D*0 and D*−s⁢D0 mass thresholds in the K+ recoil-mass spectrum for events collected at √s =4.681 GeV. The structure matches a mass-dependent-width Breit-Wigner line shape, whose pole mass and width are determined as (3982.5+1.8 −2.6±2.1) MeV/c2 and (12.8+5.3 −4.4 ±3.0) MeV, respectively. The first uncertainties are statistical and the second are systematic. The significance of the resonance hypothesis is estimated to be 5.3 σ over the contributions only from the conventional charmed mesons. This is the first candidate for a charged hidden-charm tetraquark with strangeness, decaying into D− s⁢D*0 and D*− s⁢D0. However, the properties of the excess need further exploration with more statistics

    Search for the lepton number violating decay Σ−→pe−e− and the rare inclusive decay Σ−→Σ+X

    Get PDF
    Using a data sample of (1310.6±7.0)×106 J/ψ events taken with the BESIII detector at the center-of-mass energy of 3.097 GeV, we search for the first time for the lepton number violating decay ς-→pe-e- and the rare inclusive decay ς-→ς+X, where X denotes any possible particle combination. The ς- candidates are tagged in J/ψ→ς¯(1385)+ς- decays. No signal candidates are found, and the upper limits on the branching fractions at the 90% confidence level are determined to be B(ς-→pe-e-)<6.7×10-5 and B(ς-→ς+X)<1.2×10-4

    Measurement of the doubly Cabibbo-suppressed decay D+→K+π+π−π0 with semileptonic tags

    Get PDF
    We propose a new semileptonic tag method to study the doubly Cabibbo-suppressed D decay in ψ(3770)→DD¯ reaction. Utilizing the dataset corresponding to an integrated luminosity of 2.93 fb-1 at a center-of-mass energy of 3.773 GeV collected by the BESIII detector, we determine the branching fraction for D+→K+π+π-π0 to be (1.03±0.12stat±0.06syst)×10-3, in which the contributions from narrow intermediate resonances, D+→K+η, D+→K+ω, and D+→K+φ have been excluded. Combining the world average of the branching fraction of D+→K-π+π+π0, we determine B(D+→K+π+π-π0)/B(D+→K-π+π+π0)=(1.65±0.21)%, corresponding to (5.73±0.73)tan4θc, where θc is the Cabibbo mixing angle. These results are consistent with our previous measurement with hadronic tags but are significantly larger than other doubly Cabibbo-suppressed decays in the charm sector

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    A saturated map of common genetic variants associated with human height.

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    The persistent shadow of the supermassive black hole of M 87

    Get PDF
    In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109 M⊙. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet
    corecore