244 research outputs found

    Otimização da desidratação osmótica da mangaba (Hancornia speciosa) como alternativa para a sua preservação

    Get PDF
    A mangaba (Hancornia speciosa) é um fruto característico da região Nordeste do Brasil e apresenta excelentes atributos sensoriais e nutritivos, sendo também utilizado na industrialização, sob a forma de doces, geleias, compotas, vinho, vinagre, suco e sorvete. Esta pesquisa objetiva otimizar o processo de desidratação osmótica (DO) da mangaba ao analisar a influência de diferentes concentrações de solução osmótica (C) em diferentes períodos de imersão (T) do fruto, sobre as respostas perda de água (PA) e ganho de sólidos (GS), a fim de estabelecer condições ótimas para a melhor conservação do fruto.  Para o desenvolvimento da pesquisa, os frutos foram adquiridos no estádio de maturação maduro de um fornecedor local da região de Salvaterra (Pará) e transportados para o Laboratório de Tecnologia de Alimentos (UEPA – Campus Salvaterra), onde se iniciaram os procedimentos de desidratação osmótica. A relação amostra/solução foi de 1 g do fruto para cada 5 mL da solução osmótica, sendo a umidade determinada antes e após o processo. Para avaliar os efeitos das variáveis independentes (C e T), foi utilizado um delineamento composto central rotacional (DCCR) do tipo 22, totalizando 11 ensaios experimentais. As análises estatísticas dos coeficientes de regressão e a análise de variância (ANOVA) foram utilizados para avaliar o grau de ajuste dos modelos propostos aos dados experimentais. As superfícies de respostas apontaram que maiores concentrações de solução osmótica (C) e maiores tempos de imersão (T) favoreceram as maiores PA e GS no fruto. Os resultados obtidos para a otimização simultânea das respostas definiu como condições ótimas para o processo: C = 56 % e T = 55,18 min, visando a maximização da PA e minimização do GS

    Particle-flow reconstruction and global event description with the CMS detector

    Get PDF
    The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic tau decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for anomalous couplings in boosted WW/WZ -> l nu q(q)over-bar production in proton-proton collisions at root s=8TeV

    Get PDF
    Peer reviewe

    Search for Vector-Like Charge 2/3 T Quarks in Proton-Proton Collisions at s\sqrt{s} = 8 TeV

    No full text
    A search for fermionic top quark partners T of charge 2/3 is presented. The search is carried out in proton-proton collisions corresponding to an integrated luminosity of 19.7 inverse femtobarns collected at a center-of-mass energy of s\sqrt{s} = 8 TeV with the CMS detector at the LHC. The T quarks are assumed to be produced strongly in pairs and can decay into tH, tZ, and bW. The search is performed in five exclusive channels: a single-lepton channel, a multilepton channel, two all-hadronic channels optimized either for the bW or the tH decay, and one channel in which the Higgs boson decays into two photons. The results are found to be compatible with the standard model expectations in all the investigated final states. A statistical combination of these results is performed and lower limits on the T quark mass are set. Depending on the branching fractions, lower mass limits between 720 and 920 GeV at 95% confidence level are found. These are among the strongest limits on vector-like T quarks obtained to date

    Search for a charged Higgs boson in pp collisions at s√=8 TeV

    No full text

    Measurement of the top quark pair production cross section in proton-proton collisions at (s)=\sqrt(s) = 13 TeV

    No full text
    corecore