36 research outputs found

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure

    Advanced therapeutic dressings for effective wound healing

    Get PDF
    Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing due to the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer reviewed literature and other publicly available sources such as the FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, surgical and traumatic wounds (e.g. accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue engineered substitutes, biomaterials based biological dressings, biological and naturally derived dressings, medicated sutures and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care

    Preparation and characterization of NANOSILVER/TITANIUM dioxide particles for application in lDPE composites with antimicrobial activity

    No full text
    This study investigated the use of a charger inorganic (titanium dioxide) as a support for silver nanoparticles and evaluated the use of material obtained as filler in polymer for antimicrobial application.Silver nanoparticles-titanium dioxide were synthesized by the reduction method developed by Turkevich, also known as a method of citrate. Therefore, we used three different types of titanium dioxide in the colloidal synthesis and found that nanometer titanium dioxide showed better results for the deposition of silver nanoparticles. Silver Nitrate was reduced by sodium citrate with and without the presence of a surfactant (PVP-Polyvinylpyrrolidone) resulting in a stable suspension of nanoparticles of silver / titanium dioxide. We also tested NH4OH (ammonium hydroxide) to prevent the growth of nanoparticles during the reaction. Nanocomposite of LDPE and LDPE / EVA were produced by mixing in the molten state with the Ag nanoparticles-titanium dioxide resulting from the colloidal synthesis. By assessing the rheological, thermal and morphological analysis we found that compared with nanocomposite LDPE / EVA, LDPE nanocomposite showed better results with regard to dispersion of the charges, but nanocomposite LDPE / EVA showed better results in antimicrobial assays due to the polar nature the grouping of EVA able to bind more easily to inorganic fillers.Universidade Federal de Sao CarlosNeste trabalho foi estudada a utilização de um carregador inorgânico (dióxido de titânio) como suporte para as nanopartículas de prata e avaliado o uso do material obtido como carga em polímeros para aplicação antimicrobial. Nanopartículas de prata-dióxido de titânio foram sintetizadas pelo método de redução desenvolvido por Turkevich, também conhecido como método do citrato. Para tanto foram utilizados 3 diferentes tipos de dióxido de titânio na síntese coloidal e verificou-se que os dióxidos de titânio na forma nanométrica apresentaram melhores resultados quanto a deposição das nanopartículas de prata. O Sal de Prata (Nitrato de Prata) foi reduzido pelo citrato de sódio sem e com a presença de um surfactante (PVP- Polivinilpirrolidona) resultando numa suspensão estabilizada de nanopartículas de prata / dióxido de titânio. Foi testado também a presença de um agente moderador da reação, NH4OH (hidróxido de amônia), para evitar o crescimento das nanopartículas durante a reação. Os nanocompósitos de LDPE e LDPE/EVA foram produzidos através da mistura no estado fundido com as nanopartículas de Ag- dióxido de titânio resultantes da síntese coloidal. Através das análises reológicas, térmicas e morfológicas constatou-se que em comparação com o nanocompósito LDPE/EVA, o nanocompósito com LDPE apresentou resultados melhores quanto a dispersão das cargas, porém o nanocompósito LDPE/EVA apresentou melhores resultados nos ensaios antimicrobiais devido a natureza polar do grupamento do EVA capaz de se ligar mais facilmente às cargas inorgânicas

    Novel Antimicrobial Peptides Bacterial Cellulose Obtained by Symbioses Culture Between Polyhexanide Biguanide (PHMB) and Green Tea

    No full text
    Bacterial cellulose is a highly hydrated pellicle made up of a random assembly of ribbon shaped fibers less than 5 nm wide. The unique properties provided by the nanometric structure have led to a number of diagnostic biological probes, display devices due to their unique size-dependent medical applications. Bacterial cellulose matrix extracellular is a novel biotechnology and unique medicine indicated for ultimate chronic wound treatment management, drug delivery, tissue engineering, skin cancer and offers an actual and effective solution to a serious medical and social problem and to promote rapid healing in lesions caused by Diabetic burns, ulcers of the lower limbs or any other circumstance in which there's epidermal or dermal loss. In this work, it is reported novel antimicrobial peptides (AMPs) bacterial cellulose/polyhexanide biguanide (PHMB) which are produced by symbioses culture between polyhexanide biguanide and green tea culture medium resulting in the pure 3-D structure consisting of an ultra-fine network of novel biocellulose/PHMB nanofibres matrix (2-8 nm), highly hydrated (99% in weight), and with higher molecular weight, full biocompatibility

    Nanoderm Extracellular Matrix for Reconstructive Surgery Applications

    No full text
    Introduction: Bacterial cellulose (BC) can be used in wide area of applied scientific, especially for tissue regeneration and regenerative medicine, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this scope, Natural ECM is the ideal biological scaffold since it contains all the components of the tissue.The development of mimicking biomaterials and hybrid biomaterial can further advance directed cellular differentiation without specific induction.&nbsp;Methods: The acetic fermentation process was achieved by using glucose as a carbohydrate source. Results of this process are vinegar and a nanobiocellulose biomass. The modifying process is based on the addition of hyaluronic acid and chondroitin sulfate (1% w/w) to the culture medium before the bacteria is inoculated. After, vegetal stem cells were added in the system, which were chosen because has wound healing properties that help new skin formation. (Casearia Sylvestris).Result: Bacterial cellulose (Nanoskin®) was successfully modified by changing the fermentation medium as shown by FTIR and TGA, which produced necessary materials for regenerative medicine. Nanoskin Natural extracellular matrix (ECMs) perform the tasks necessary for tissue formation,maintenance, regulation and function, providing a powerful means of controlling the biological performance of regenerative materials.Conclusion: Nanoderm® Natural extracellular matrix (ECMs) perform the tasks necessary for tissue formation, maintenance, regulation and function, providing a powerful means of controlling the biological performance of regenerative materials. Understanding how cells interact with these to assemble their own ECM and how the scaffolds can be used to control delivery of signals in a temporal and spatial manner to guide or maintain cell differentiations need future investigation. But,undoubtedly, natural-origin polymers or nature-inspired materials appear as the natural and desired choice for medical applications.</p

    Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications

    No full text
    Tissue engineering has been defined as an interdisciplinary field that applies the principles of engineering and life sciences for the development of biological substitutes to restore, maintain or improve tissue function. This area is always looking for new classes of degradable biopolymers that are biocompatible and whose activities are controllable and specific, more likely to be used as cell scaffolds, or in vitro tissue reconstruction. In this paper, we developed a novel bionanocomposite with homogeneous porous distribution and prospective natural antimicrobial properties by electrospinning technique using Stryphodedron barbatimao extract (Barbatimão). SEM images showed equally distribution of nanofibres. DSC and TGA showed higher thermal properties and change crystallinity of the developed bionanocomposite mainly because these structural modification. © 2012 Elsevier B.V

    Bacterial Cellulose Nanobiocomposites for Dental Materials Scaffolds

    No full text
    Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate and hyaluronic acid (1% w/w) to the culture medium before the bacteria is inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate and hyaluronic acid effects in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between bacterial cellulose nanobiocomposites and calcium phosphate. XRD demonstrated amorphous calcium phosphate, carbonated apatite and calcium chloride on bacterial cellulose nanobiocomposites. Monocalcium phosphate monohydrate phase formation [Ca(H2PO4)(2)center dot H2O] are here attested by FTIR, XRD and Ca/P relation
    corecore