42 research outputs found

    Horta medicinal na escola – uma ferramenta de ensino

    Get PDF
    Anais do II Seminário Seminário Estadual PIBID do Paraná: tecendo saberes / organizado por Dulcyene Maria Ribeiro e Catarina Costa Fernandes — Foz do Iguaçu: Unioeste; Unila, 2014A horta medicinal escolar é um espaço de cultivo de vegetais para o estudo de plantas da região e suas indicações. O objetivo foi construir uma horta medicinal para o resgate do conhecimento prévio dos alunos de 6o ano do ensino fundamental e contribuir para a aprendizagem informal, valorizando o conhecimento popular. O projeto está em desenvolvimento no Colégio Estadual Leonardo Da Vinci (Dois Vizinhos), com dois encontros na semana, de duas horas cada. Iniciou-se com o convite aos alunos e apresentou-se o projeto aos participantes. Além disso, trabalhou-se a origem das plantas medicinais, discutiu-se sobre suas indicações e realizou-se a montagem da horta, que culminou com a confecção do herbário. Observou-se o interesse dos alunos em cada atividade realizada, bem como o aumento do grupo em cada encontro, reforçando a prática da horta medicinal como uma ferramenta de ensin

    Use and Abuse of the Fisher Information Matrix in the Assessment of Gravitational-Wave Parameter-Estimation Prospects

    Get PDF
    The Fisher-matrix formalism is used routinely in the literature on gravitational-wave detection to characterize the parameter-estimation performance of gravitational-wave measurements, given parametrized models of the waveforms, and assuming detector noise of known colored Gaussian distribution. Unfortunately, the Fisher matrix can be a poor predictor of the amount of information obtained from typical observations, especially for waveforms with several parameters and relatively low expected signal-to-noise ratios (SNR), or for waveforms depending weakly on one or more parameters, when their priors are not taken into proper consideration. In this paper I discuss these pitfalls; show how they occur, even for relatively strong signals, with a commonly used template family for binary-inspiral waveforms; and describe practical recipes to recognize them and cope with them. Specifically, I answer the following questions: (i) What is the significance of (quasi-)singular Fisher matrices, and how must we deal with them? (ii) When is it necessary to take into account prior probability distributions for the source parameters? (iii) When is the signal-to-noise ratio high enough to believe the Fisher-matrix result? In addition, I provide general expressions for the higher-order, beyond--Fisher-matrix terms in the 1/SNR expansions for the expected parameter accuracies.Comment: 24 pages, 3 figures, previously known as "A User Manual for the Fisher Information Matrix"; final, corrected PRD versio

    Update of Estimated Agricultural Benefits Attributable to Drainage and Flood Control in Willacy County, Texas

    Get PDF
    This study presents an economic analysis of agricultural benefits attributable to a proposed drainage project which includes on farm systems, laterals (ditches) and major canals designed to lower the groundwater table and provide an outlet for floodwater from agricultural land in Willacy county, Texas as provided by the Raymondville Drain. There are benefits to the urban communities that are not included in this update

    Ecosystem and Wildlife Implications of Brush: Management System Designed to Improve Water Runoff and Percolation

    Get PDF
    With the settlement of Texas and establishment of ranchers to produce cattle, there was an effort to maximize beef production. This caused serious overgrazing. In addition, there was a reduced incidence of fires across the landscape to clear out brush. These factors led to deterioration of the grazing lands and provided an opportunity for invasive intrusion by brush and other species onto the land and riparian zones. There has been a large-scale conversion from grasslands and savannahs to wildlands over the last 150 years (Scholes and Archer, 1997). The overall impacts are significantly impaired uplands and reduced percolation and surface flow of water from rainfall which caused changes and loss in basic aquatic and terrestrial habitat. The State of Texas adopted a program to study and implement brush management systems across the state to improve the water availability in streams, rivers, reservoirs and aquifers, as well as to improve the rangelands. The feasibility studies have shown great promise for improving ranchland and improving the water situation. However, there is less known about the aquatic and wildlife species response implications of brush management. Certainly, there are opportunities for improving the viability of an ecosystem through brush management strategies and continuing management practices. The purpose of this study was to evaluate the changes in hydrology and biological diversity associated with brush management in two watersheds where significant data was already available. This study focused on assessing the aquatic and terrestrial species implications related to specified brush management strategies over time. This involved an integrated analysis including modeling of the landscape, assessing biological diversity and developing economic implications for the two watersheds (Twin Buttes and Edwards regions). Thus, this study is comprised of three parts: modeling of brush management strategies temporally, assessing biological diversity (aquatic and terrestrial) and estimating economic implications. This represents a complex analysis involving variable units and multiple disciplines. Previous feasibility studies of brush removal have been targeted at maximizing water runoff. This analysis is an extension that is designed to examine the implications of brush management under a more restrictive set of brush removal criteria that were chosen based upon wildlife considerations. To achieve the integration of hydrologic modeling, range ecology, and economic implications, there were three team meetings bringing together all components to review status and set priorities for the remainder of the work. In addition, scientists in the three basic groups of specialization interacted daily along with representatives of the Corps of Engineers to assure that each decision was reflected in other parts of the analyses. The major addition of this analysis to brush management feasibility studies being conducted as part of the Texas brush management plan is the consideration of wildlife and aquatic biota and assessing changes in biological diversity likely to result from alternative brush management scenarios

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V
    corecore