4 research outputs found
Activated Carbon Impregnated with Elementary Iodine: Applications against Virus- and Bacteria-Related Issues
An iodine-doped activated carbon (named IodAC) was developed by adsorbing molecular iodine (I2) on commercially available activated carbon (AC). Iodine was selected with the purpose to add its well-known antibacterial and antiviral properties to the AC and in order to produce an innovative material for environmental pathogens control and for healthcare-related applications. The impregnation method achieved the goal of strongly adsorbing iodine on the AC surface, since both volatility and water solubility resulted to be negligible, and therefore it did not affect the stability of the material. An antibacterial test (on Escherichia coli) and an antiviral test (on an avian influenza strain) were conducted, showing the effectiveness of IodAC against the pathogens. In addition, IodAC was also compared to slaked lime (a material widely used for disinfection of outdoor spaces and livestock farming areas). The data proved the performance of IodAC against virus and bacteria and also evidenced a more stable and long-lasting disinfecting power of IodAC compared to slaked lime, the later reacting with carbon dioxide and suffering a gradually decrease of its disinfectant power; such drawback does not affect IodAC. Overall, the presented results show that IodAC can be used for a wide range of applications, including as a granular disinfectant for public spaces, for water disinfection, zoonotic diseases countermeasures (e.g., as an animal feed additive for avian influenza control), post-harvest food storage, and sanitization. Its characteristics also indicate its potential to be used for medical treatments, such as for blood, intestinal (for HIV, sepsis, irritable syndrome, ulcerative colitis therapy), and medical supplies (antibacterial bandages, gauze, cotton, etc.) sterilization
Oral Administration of Probiotics (Bacillus subtilis and Lactobacillus plantarum) in Nile Tilapia (Oreochromis niloticus) Vaccinated and Challenged with Streptococcus agalactiae
Streptococcus agalactiae is an important bacterial pathogen in intensive Nile tilapia production, causing high mortality rates and great economic losses. This work aimed to evaluate the Nile tilapia vaccination against S. agalactiae and fed with ration containing probiotic AQUA PHOTO® composed of Bacillus subtilis and Lactobacillus plantarum, on the immune response action and gut microbiota. The experimental design was completely randomized with five treatments (CON = control; ADJ = adjuvant; PRO = probiotic; VAC = vaccine; PRO + VAC = probiotic + vaccine) and five replicates. The vaccine (bacterin + adjuvant) was injected after 21 days (21d) of probiotic feeding and the vaccine was booster 14 days post-vaccination (35d). After 14 days of the booster (49d), the fish were challenged with S. agalactiae and observed for more than 14 days, completing 63 days. The immunized group showed a better survival rate (CON 40%; ADJ 57%; PRO 67%; VAC 87%; PRO + VAC 97%). The treatments VAC and PRO + VAC, after booster produced higher levels of IgM antibodies compared with the control from the same time. The combination of probiotic and vaccination provided better protection against S. agalactiae infection, directly affecting the gut microbiological profile. These results indicated the contribution of probiotic to the adaptive immune response through the modulation of the intestinal microbiota, improving the effect of the vaccination. In conclusion, AQUA PHOTO®, composed of B. subtilis and L. plantarum, orally administered to Nile tilapia vaccinated against and challenged with S. agalactiae increases protection from infection and modifies the intestinal microbiota profile of the host, promoting the microbiota balance and improving adaptive immune response