168 research outputs found

    Coeval granitic magmatism in the southern segment of the Liupanshan at the SW margin of the NCC: Implications for Paleoproterozoic extension

    Full text link
    The ages of the Shizuizi, Baojiashan and Duanjiaxia granites are poorly constrained. They are exposed along the southern segment of the Liupanshan fault system at the southwestern margin of the North China Craton. They form a NW-trending belt of coeval A-type granitic magmatism, characterized by high Si, alkalis, Rb/Sr, and Ga/Al. Their trace element characteristics include relative enrichments in K, Rb, and Th, and depletions in Ti, Ta, Nb, P, and Sr. Zircons from the granite yield U-Pb age of 1738 ± 15 Ma for the Baojiashan granite which has similar zircon U-Pb ages with Shizuizi (1778 Ma) and Duanjiaxia (1802 Ma) granites. The granite has negative εNd(t) of -22.5 to -20.0 and the two-stage model ages of 2.29 - 2.45 Ga. An analysis of the regional tectonics suggests that the granites were emplaced during Paleoproterozoic extension at the southwestern margin of North China Craton, where magmatism was caused by tectonic activity related to the development of the Helan aulacogen

    Signal pathways underlying homocysteine-induced production of MCP-1 and IL-8 in cultured human whole blood

    Full text link
    Aim : To elucidate the mechanisms underlying homocysteine (Hcy)-induced chemokine production. Methods : Human whole blood was pretreated with inhibitors of calmodulin (CaM), protein kinase C (PKC), protein tyrosine kinase (PTK), mitogen-activated protein kinase (MAPK), and NF-ΚB and activators of PPARΓ for 60 min followed by incubation with Hcy 100 Μmol/L for 32 h. The levels of mitogen chemokine protein (MCP)-1 and interleukin-8 (IL-8) were determined by enzyme-linked immunosorbant assay (ELISA). Results : Inhibitors of PKC (calphostin C, 50-500 nmol/L and RO-31-8220, 10–100 nmol/L), CaM (W7, 28–280 Μmol/L), ERK1/2 MAPK (PD 98059, 2–20 Μmol/L), p38 MAPK (SB 203580, 0.6–6 Μmol/L), JNK MAPK (curcumin, 2–10 Μmol/L), and NF-ΚB (PDTC, 10-100 nmol/L) markedly reduced Hcy 100 Μmol/L-induced production of MCP-1 and IL-8 in human cultured whole blood, but the inhibitors of PTK (genistein, 2.6–26 Μmol/L and tyrphostin, 0.5-5 Μmol/L) had no obvious effect on MCP-1 and IL-8 production. PPARΓ activators (ciglitazone 30 Μmol/L and troglitazone 10 Μmol/L) depressed the Hcy-induced MCP-1 production but not IL-8 production in the cultured whole blood. Conclusion : Hcy-induced MCP-1 and IL-8 production is mediated by activated signaling pathways such as PKC, CaM, MAPK, and NF-ΚB. Our results not only provide clues for the signal transduction pathways mediating Hcy-induced chemokine production, but also offer a plausible explanation for a pathogenic role of hyperhomocysteinemia in these diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75644/1/j.1745-7254.2005.00005.x.pd

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
    corecore