162 research outputs found

    Transcriptional diversity of long-term glioblastoma survivors

    Get PDF
    BACKGROUND: Glioblastoma (GBM) is a highly aggressive type of glioma with poor prognosis. However, a small number of patients live much longer than the median survival. A better understanding of these long-term survivors (LTSs) may provide important insight into the biology of GBM. METHODS: We identified 7 patients with GBM, treated at Memorial Sloan-Kettering Cancer Center (MSKCC), with survival \u3e48 months. We characterized the transcriptome of each patient and determined rates of MGMT promoter methylation and IDH1 and IDH2 mutational status. We identified LTSs in 2 independent cohorts (The Cancer Genome Atlas [TCGA] and NCI Repository for Molecular Brain Neoplasia Data [REMBRANDT]) and analyzed the transcriptomal characteristics of these LTSs. RESULTS: The median overall survival of our cohort was 62.5 months. LTSs were distributed between the proneural (n = 2), neural (n = 2), classical (n = 2), and mesenchymal (n = 1) subtypes. Similarly, LTS in the TCGA and REMBRANDT cohorts demonstrated diverse transcriptomal subclassification identities. The majority of the MSKCC LTSs (71%) were found to have methylation of the MGMT promoter. None of the patients had an IDH1 or IDH2 mutation, and IDH mutation occurred in a minority of the TCGA LTSs as well. A set of 60 genes was found to be differentially expressed in the MSKCC and TCGA LTSs. CONCLUSIONS: While IDH mutant proneural tumors impart a better prognosis in the short-term, survival beyond 4 years does not require IDH mutation and is not dictated by a single transcriptional subclass. In contrast, MGMT methylation continues to have strong prognostic value for survival beyond 4 years. These findings have substantial impact for understanding GBM biology and progression

    Residual Cx45 and its relationship to Cx43 in murine ventricular myocardium

    Get PDF
    Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin (Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre(+);Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/µg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre(+);Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates eight Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation

    Transcriptional Activation of TINF2, a Gene Encoding the Telomere-Associated Protein TIN2, by Sp1 and NF-κB Factors

    Get PDF
    The expression of the telomere-associated protein TIN2 has been shown to be essential for early embryonic development in mice and for development of a variety of human malignancies. Recently, germ-line mutations in TINF2, which encodes for the TIN2 protein, have been identified in a number of patients with bone-marrow failure syndromes. Yet, the molecular mechanisms that regulate TINF2 expression are largely unknown. To elucidate the mechanisms involved in human TINF2 regulation, we cloned a 2.7 kb genomic DNA fragment containing the putative promoter region and, through deletion analysis, identified a 406 bp region that functions as a minimal promoter. This promoter proximal region is predicted to contain several putative Sp1 and NF-κB binding sites based on bioinformatic analysis. Direct binding of the Sp1 and NF-κB transcription factors to the TIN2 promoter sequence was demonstrated by electrophoretic mobility shift assay (EMSA) and/or chromatin immunoprecipitation (ChIP) assays. Transfection of a plasmid carrying the Sp1 transcription factor into Sp-deficient SL2 cells strongly activated TIN2 promoter-driven luciferase reporter expression. Similarly, the NF-κB molecules p50 and p65 were found to strongly activate luciferase expression in NF-κB knockout MEFs. Mutating the predicted transcription factor binding sites effectively reduced TIN2 promoter activity. Various known chemical inhibitors of Sp1 and NF-κB could also strongly inhibit TIN2 transcriptional activity. Collectively, our results demonstrate the important roles that Sp1 and NF-κB play in regulating the expression of the human telomere-binding protein TIN2, which can shed important light on its possible role in causing various forms of human diseases and cancers

    Ror2 Enhances Polarity and Directional Migration of Primordial Germ Cells

    Get PDF
    The trafficking of primordial germ cells (PGCs) across multiple embryonic structures to the nascent gonads ensures the transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated, resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant. We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF (secreted KitL), whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell

    Study of Mn Dissolution from LiMn[sub 2]O[sub 4] Spinel Electrodes Using Rotating Ring-Disk Collection Experiments

    Full text link
    The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions. The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at >4.1 V) and in a discharged state (at <3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate

    The Ketogenic Diet Is an Effective Adjuvant to Radiation Therapy for the Treatment of Malignant Glioma

    Get PDF
    INTRODUCTION: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4:1 (fat:carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas. METHODS: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD) or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging. RESULTS: Animals fed KC had elevated levels of β-hydroxybutyrate (p = 0.0173) and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001). Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days. CONCLUSIONS: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas

    Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite advances in the understanding of diabetic retinopathy, the nature and time course of molecular changes in the retina with diabetes are incompletely described. This study characterized the functional and molecular phenotype of the retina with increasing durations of diabetes.</p> <p>Results</p> <p>Using the streptozotocin-induced rat model of diabetes, levels of retinal permeability, caspase activity, and gene expression were examined after 1 and 3 months of diabetes. Gene expression changes were identified by whole genome microarray and confirmed by qPCR in the same set of animals as used in the microarray analyses and subsequently validated in independent sets of animals. Increased levels of vascular permeability and caspase-3 activity were observed at 3 months of diabetes, but not 1 month. Significantly more and larger magnitude gene expression changes were observed after 3 months than after 1 month of diabetes. Quantitative PCR validation of selected genes related to inflammation, microvasculature and neuronal function confirmed gene expression changes in multiple independent sets of animals.</p> <p>Conclusion</p> <p>These changes in permeability, apoptosis, and gene expression provide further evidence of progressive retinal malfunction with increasing duration of diabetes. The specific gene expression changes confirmed in multiple sets of animals indicate that pro-inflammatory, anti-vascular barrier, and neurodegenerative changes occur in tandem with functional increases in apoptosis and vascular permeability. These responses are shared with the clinically documented inflammatory response in diabetic retinopathy suggesting that this model may be used to test anti-inflammatory therapeutics.</p

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting
    corecore