2,446 research outputs found

    Anisotropic strains, metal-insulator transition, and magnetoresistance of La0.7_{0.7}Ca0.3_{0.3}MnO3_{3} films

    Full text link
    Thin films of perovskite manganite La0.7_{0.7}Ca0.3_{0.3}MnO3_{3} were grown epitaxially on various substrates by either the pulsed laser deposition method or laser molecular beam epitaxy. The substrates change both the volume and symmetry of the unit cell of the films. It is revealed that the symmetry as well as the volume of the unit cell have strong influence on the metal-insulator transition temperature and the size of magnetoresistance.Comment: 6 pages, 3 figure

    Magnetic Properties of Dilute Alloys: Equations for Magnetization and its Structural Fluctuations

    Full text link
    The dilute Heisenberg ferromagnet is studied taking into account fluctuations of magnetization caused by disorder. A self-consistent system of equations for magnetization and its mean quadratic fluctuations is derived within the configurationally averaged two-time temperature Green's function method. This system of equations is analised at low concentration of non-magnetic impurities. Mean relative quadratic fluctuations of magnetization are revealed to be proportional to the square of concentration of impurities.Comment: 16 pages, LaTe

    Charge ordering, ferroelectric, and magnetic domains in LuFe2O4 observed by scanning probe microscopy

    Get PDF
    LuFe2O4 is a multiferroic system which exhibits charge order, ferroelectricity, and ferrimagnetism simultaneously below similar to 230 K. The ferroelectric/charge order domains of LuFe2O4 are imaged with both piezoresponse force microscopy (PFM) and electrostatic force microscopy (EFM), while the magnetic domains are characterized by magnetic force microscopy (MFM). Comparison of PFM and EFM results suggests that the proposed ferroelectricity in LuFe2O4 is not of usual displacive type but of electronic origin. Simultaneous characterization of ferroelectric/charge order and magnetic domains by EFM and MFM, respectively, on the same surface of LuFe2O4 reveals that both domains have irregular patterns of similar shape, but the length scales are quite different. The domain size is approximately 100 nm for the ferroelectric domains, while the magnetic domain size is much larger and gets as large as 1 mu m. We also demonstrate that the origin of the formation of irregular domains in LuFe2O4 is not extrinsic but intrinsic. (c) 2015 AIP Publishing LLC.open11116sciescopu

    Influence of ambient water intrusion on coral reef acidification in the Chuuk lagoon, located in the coral-rich western Pacific Ocean

    Get PDF
    Weekly carbonate chemistry condition data recorded between 2008 and 2014 in the Chuuk lagoon (7.3 degrees N and 151.5 degrees E) of the Federated States of Micronesia, located in the western Pacific Ocean, were analyzed. The results showed that, during periods of weak intrusion of ambient seawater from the surrounding open ocean, two internal biological processes (calcification and respiration) reinforced each other and together lowered the pH of the reef water for extended periods, ranging from a few to several months. The analysis indicated that reduced intrusion of ambient water is associated with periods of low wind speeds. Such conditions increase the residence time of reef water, thus promoting acidification by respiration and calcification. This phenomenon likely affects many other areas of the coral-rich western Pacific Ocean, which contains 50% of global coral reefs and in which the degree of ambient water intrusion into the atolls has been shown to be closely associated with the El Nino-Southern Oscillation-induced wind speed change.1111Ysciescopu

    Cdk5 Phosphorylates Dopamine D2 Receptor and Attenuates Downstream Signaling

    Get PDF
    The dopamine D2 receptor (DRD2) is a key receptor that mediates dopamine-associated brain functions such as mood, reward, and emotion. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase whose function has been implicated in the brain reward circuit. In this study, we revealed that the serine 321 residue (S321) in the third intracellular loop of DRD2 (D2i3) is a novel regulatory site of Cdk5. Cdk5-dependent phosphorylation of S321 in the D2i3 was observed in in vitro and cell culture systems. We further observed that the phosphorylation of S321 impaired the agonist-stimulated surface expression of DRD2 and decreased G protein coupling to DRD2. Moreover, the downstream cAMP pathway was affected in the heterologous system and in primary neuronal cultures from p35 knockout embryos likely due to the reduced inhibitory activity of DRD2. These results indicate that Cdk5-mediated phosphorylation of S321 inhibits DRD2 function, providing a novel regulatory mechanism for dopamine signaling.X111111sciescopu

    Terahertz spin-orbital excitations in the paramagnetic state of multiferroic Sr2FeSi2O7

    Get PDF
    We studied the novel multiferroic material Sr2FeSi2O7 and found three absorption modes above the magnetic ordering transition temperature using time-domain terahertz spectroscopy. These absorption modes can be explained as the optical transitions between the spin-orbit coupling and crystal-field split 3d(6) Fe2+ ground-state term in this material. Consideration of the compressed tetrahedral environment of the Fe2+ site is crucial to understand the excitations. We point out, however, discrepancies between the single-site atomic picture and the experimental results.1133Ysciescopu

    HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons

    Get PDF
    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. © 2013 Zhang et al

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore