69 research outputs found

    Computation of the Halo Mass Function Using Physical Collapse Parameters: Application to Non-Standard Cosmologies

    Full text link
    In this article we compare the halo mass function predicted by the excursion set theory with a drifting diffusive barrier against the results of N-body simulations for several cosmological models. This includes the standard LCDM case for a large range of halo masses, models with different types of primordial non-Gaussianity, and the Ratra-Peebles quintessence model of Dark Energy. We show that in all those cosmological scenarios, the abundance of dark matter halos can be described by a drifting diffusive barrier, where the two parameters describing the barrier have physical content. In the case of the Gaussian LCDM, the statistics are precise enough to actually predict those parameters at different redshifts from the initial conditions. Furthermore, we found that the stochasticity in the barrier is nonnegligible making the simple deterministic spherical collapse model a bad approximation even at very high halo masses. We also show that using the standard excursion set approach with a barrier inspired by peak patches leads to inconsistent predictions of the halo mass function.Comment: 25 pages, 12 figure

    Self-consistency of the Excursion Set Approach

    Full text link
    The excursion set approach provides a framework for predicting how the abundance of dark matter halos depends on the initial conditions. A key ingredient of this formalism comes from the physics of halo formation: the specification of a critical overdensity threshold (barrier) which protohalos must exceed if they are to form bound virialized halos at a later time. Another ingredient is statistical, as it requires the specification of the appropriate statistical ensemble over which to average when making predictions. The excursion set approach explicitly averages over all initial positions, thus implicitly assuming that the appropriate ensemble is that associated with randomly chosen positions in space, rather than special positions such as peaks of the initial density field. Since halos are known to collapse around special positions, it is not clear that the physical and statistical assumptions which underlie the excursion set approach are self-consistent. We argue that they are at least for low mass halos, and illustrate by comparing our excursion set predictions with numerical data from the DEUS simulations.Comment: 5 pages, 2 figure

    Introducing the Dark Energy Universe Simulation Series (DEUSS)

    Full text link
    In this "Invisible Universe" proceedings, we introduce the Dark Energy Universe Simulation Series (DEUSS) which aim at investigating the imprints of realistic dark energy models on cosmic structure formation. It represents the largest dynamical dark energy simulation suite to date in term of spatial dynamics. We first present the 3 realistic dark energy models (calibrated on latest SNIa and CMB data): LambdaCDM, quintessence with Ratra-Peebles potential, and quintessence with Sugra potential. We then isolate various contributions for non-linear matter power spectra from a series of pre-DEUSS high-resolution simulations (130 million particles). Finally, we introduce DEUSS which consist in 9 Grand Challenge runs with 1 billion particles each thus probing scales from 4 Gpc down to 3 kpc at z=0. Our goal is to make these simulations available to the community through the "Dark Energy Universe Virtual Observatory" (DEUVO), and the "Dark Energy Universe Simulations" (DEUS) consortium.Comment: 6 pages, 3 figures, to appear in the AIP proceedings of the 'Invisible Universe International Conference', UNESCO-Paris, June 29-July 3, 200

    Imprints of dark energy on cosmic structure formation: II) Non-Universality of the halo mass function

    Full text link
    The universality of the halo mass function is investigated in the context of dark energy cosmologies. This widely used approximation assumes that the mass function can be expressed as a function of the matter density omega_m and the rms linear density fluctuation sigma only, with no explicit dependence on the properties of dark energy or redshift. In order to test this hypothesis we run a series of 15 high-resolution N-body simulations for different cosmological models. These consists of three LCDM cosmologies best fitting WMAP-1, 3 and 5 years data, and three toy-models characterized by a Ratra-Peebles quintessence potential with different slopes and amounts of dark energy density. These toy models have very different evolutionary histories at the background and linear level, but share the same sigma8 value. For each of these models we measure the mass function from catalogues of halos identified in the simulations using the Friend-of-Friend (FoF) algorithm. We find redshift dependent deviations from a universal behaviour, well above numerical uncertainties and of non-stochastic origin, which are correlated with the linear growth factor of the investigated cosmologies. Using the spherical collapse as guidance, we show that such deviations are caused by the cosmology dependence of the non-linear collapse and virialization process. For practical applications, we provide a fitting formula of the mass function accurate to 5 percents over the all range of investigated cosmologies. We also derive an empirical relation between the FoF linking parameter and the virial overdensity which can account for most of the deviations from an exact universal behavior. Overall these results suggest that the halo mass function contains unique cosmological information since it carries a fossil record of the past cosmic evolution.Comment: 21 pages, 19 figures, 5 tables, published in MNRAS. Paper I: arXiv:0903.549

    Observable Signatures of the low-z Circum-Galactic and Inter-Galactic Medium : UV Line Emission in Simulations

    Get PDF
    We present for the first time predictions for UV line emission of intergalactic and circumgalactic gas from Adaptive Mesh Resolution (AMR) Large Scale Structure (LSS) simulations at redshifts 0.3<z<1.2, with specific emphasis on observability with current and near-future UV instrumentation. In three transitions of interest (Lya, OVI and CIV) there is a clear bimodality in the type of objects : the overwhelming majority of flux stems from discrete, compact sources, while a much larger volume fraction is filled by more tenuous gas. We characterise both object types with regard to number density, physical size and shape, brightness, luminosity, velocity structure, mass, temperature, ionisation state, and metal content. Degrading AMR grids to characteristic resolutions of available (such as FIREBall) or foreseeable instrumentation, allows to assess which inferences can be drawn from currently possible observations, and set foundations to prepare observing strategies for future missions. In general, the faint emission of the IGM and filamentary structure remains beyond capabilities of instruments with only short duration exposure potential (stratospheric balloons), even for optimistic assumptions for Lya, while the yet fainter metal line transitions for these structures will remain challenging for long duration exposures (space-based telescopes), mostly due to low metallicity pushing them more than three orders of magnitudes in brightness below Lya radiation. For the circum-galactic medium (CGM) the situation is more promising, and it is foreseeable that in the near future we will not only just dectect such sources, but the combination of all three lines in addition to velocity information will yield valuable insight into the physical processes at hand, illuminating important mechanisms during the formation of galaxies and their backreaction onto the IGM from whence they formed. (abrigded)Comment: Accepted for publication in MNRAS (2011 November 08, received in original form 2011 September 14). 27 pages, 19 figures, 3 tables. Some of the figures have degraded resolution due to file size limitations. For high-resolution version, please contact the first autho

    The dusty, albeit ultraviolet bright infancy of galaxies

    Full text link
    The largest galaxies acquire their mass early on, when the Universe is still youthful. Cold streams violently feed these young galaxies a vast amount of fresh gas, resulting in very efficient star formation. Using a well resolved hydrodynamical simulation of galaxy formation, we demonstrate that these mammoth galaxies are already in place a couple of billion years after the Big Bang. Contrary to local starforming galaxies, where dust re-emits a large part of the stellar ultraviolet (UV) light at infrared and sub-millimetre wavelengths, our self-consistent modelling of dust extinction predicts that a substantial fraction of UV photons should escape from primordial galaxies. Such a model allows us to compute reliably the number of high redshift objects as a function of luminosity, and yields galaxies whose UV luminosities closely match those measured in the deepest observational surveys available. This agreement is remarkably good considering our admittedly still simple modelling of the interstellar medium (ISM) physics. The luminosity functions (LF) of virtual UV luminous galaxies coincide with the existing data over the whole redshift range from 4 to 7, provided cosmological parameters are set to their currently favoured values. Despite their considerable emission at short wavelengths, we anticipate that the counterparts of the brightest UV galaxies will be detected by future sub-millimetre facilities like ALMAComment: 5 pages, 3 figures, submitted to MNRAS-le

    Rede Brasil Arroz: transferência de tecnologia valorizando o protagonismo e atribuições de parceiros na cadeia produtiva.

    Get PDF
    Introdução; Panorama da orizicultura brasileira e caracterização de problemas precedentes à Rede Brasil Arroz; Princípios básicos e propostas da Rede Brasil Arroz; Prospecção de demandas da cadeia produtiva do arroz por meio de diagnóstico; Comentários e principais resultados da atuação da Rede Brasil Arroz; Conclusões e sugestões de continuidade.bitstream/item/117788/1/CNPAF-2014cmf1.pd

    Constraining stellar assembly and AGN feedback at the peak epoch of star formation

    Get PDF
    We study stellar assembly and feedback from active galactic nuclei (AGN) around the epoch of peak star formation (1<z<2), by comparing hydrodynamic simulations to rest-frame UV-optical galaxy colours from the Wide Field Camera 3 (WFC3) Early-Release Science (ERS) Programme. Our Adaptive Mesh Refinement simulations include metal-dependent radiative cooling, star formation, kinetic outflows due to supernova explosions, and feedback from supermassive black holes. Our model assumes that when gas accretes onto black holes, a fraction of the energy is used to form either thermal winds or sub-relativistic momentum-imparting collimated jets, depending on the accretion rate. We find that the predicted rest-frame UV-optical colours of galaxies in the model that includes AGN feedback is in broad agreement with the observed colours of the WFC3 ERS sample at 1<z<2. The predicted number of massive galaxies also matches well with observations in this redshift range. However, the massive galaxies are predicted to show higher levels of residual star formation activity than the observational estimates, suggesting the need for further suppression of star formation without significantly altering the stellar mass function. We discuss possible improvements, involving faster stellar assembly through enhanced star formation during galaxy mergers while star formation at the peak epoch is still modulated by the AGN feedback.Comment: 6 pages, 4 figures, accepted for publication in MNRAS Letter

    The simulated 21 cm signal during the epoch of reionization : full modeling of the Ly-alpha pumping

    Full text link
    The 21 cm emission of neutral hydrogen is the most promising probe of the epoch of reionization(EoR). In the next few years, the SKA pathfinders will provide statistical measurements of this signal. Numerical simulations predicting these observations are necessary to optimize the design of the instruments. The main difficulty is the computation of the spin temperature of neutral hydrogen which depends on the gas kinetic temperature and on the level of the local Lyman-alpha flux. A T_s >> T_cmb assumption is usual. However, this assumption does not apply early in the reionization history, or even later in the history as long as the sources of X-rays are too weak to heat the intergalactic medium significantly. This work presents the first EoR numerical simulations including, beside dynamics and ionizing continuum radiative transfer, a self-consistent treatment of the Ly-alpha radiative transfer. This allows us to compute the spin temperature more accurately. We use two different box sizes, 20 Mpc/h and 100 Mpc/h, and a star source model. Using the redshift dependence of average quantities, maps, and power spectra, we quantify the effect of using different assumptions to compute the spin temperature and the influence of the box size. The first effect comes from allowing for a signal in absorption. The magnitude of this effect depends on the amount of heating by hydrodynamic shocks and X-rays in the intergalactic medium(IGM). The second effects comes from using the real, local, Lyman-alpha flux. This effect is important for an average ionization fraction of less than 10%: it changes the overall amplitude of the 21 cm signal, and adds its own fluctuations to the power spectrum.Comment: 20 pages, 16 figures, 2 tables, To be publish A&A. High resolution version available at http://aramis.obspm.fr/~baek/21cm_Lya.pd

    On the onset of galactic winds in quiescent star forming galaxies

    Full text link
    We studied the effect of supernovae feedback on a disk galaxy, taking into account the impact of infalling gas on both the star formation history and the corresponding outflow structure, the apparition of a supernovae-driven wind being highly sensitive to the halo mass, the galaxy spin and the star formation efficiency. We model our galaxies as cooling and collapsing NFW spheres. The dark matter component is modelled as a static external potential, while the baryon component is described by the Euler equations using the AMR code RAMSES. Metal-dependent cooling and supernovae-heating are also implemented using state-of-the-art recipes coming from cosmological simulations. We allow for 3 parameters to vary: the halo circular velocity, the spin parameter and the star formation efficiency. We found that the ram pressure of infalling material is the key factor limiting the apparition of galactic winds. We obtain a very low feedback efficiency, with supernovae to wind energy conversion factor around one percent, so that only low cicrular velocity galaxies give rise to strong winds. For massive galaxies, we obtain a galatic fountain, for which we discuss the observational properties. We conclude that for quiescent isolated galaxies, galactic winds appear only in very low mass systems. Although that can quite efficiently enrich the IGM with metals, they don't carry away enough cold material to solve the overcooling problem.Comment: 19 pages, 13 figures, 1 table, submited to A&
    corecore