70 research outputs found

    Satellite observations of long range transport of a large BrO plume in the Arctic

    Get PDF
    Ozone Depletion Events (ODE) during polar springtime are a well known phenomenon in the Arctic and Antarctic boundary layer. They are caused by the catalytic destruction of ozone by halogens producing reactive halogen oxides like bromine monoxide (BrO). The key halogen bromine can be rapidly transferred into the gas phase in an autocatalytic process – the so called "Bromine Explosion". However, the exact mechanism, which leads to an initial bromine release as well as the influence of transport and chemical processes on BrO, is still not clearly understood. <br><br> In this study, BrO measurements from the satellite instrument GOME-2 are used together with model calculations with the dispersion model FLEXPART to study an arctic BrO event in March 2007, which could be tracked over several days and a large area. Full BrO activation was observed within one day east of Siberia with subsequent transport to Hudson Bay. The event was linked to a cyclone with very high surface wind speeds, which could have been involved in the production and lifting of aerosols or blowing snow. Considering the short life time of BrO, transported aerosols or snow can also provide the surface for BrO recycling within the plume for several days. The evolution of the BrO plume could be reproduced by FLEXPART simulations of a passive tracer indicating that the activated air mass was transported all the way from Siberia to Hudson Bay. To localise the most probable transport height, model runs initialised in different heights have been performed showing similar transport patterns throughout the troposphere but best agreement with the measurements between the surface and 3 km. The influence of changes in tropopause height on measured BrO values has been considered, but cannot completely explain the observed high BrO values. Backward trajectories from the area of BrO initialisation show upward lifting from the surface up to 3 km and no indication for intrusion of stratospheric air. These observations are consistent with a scenario in which bromine in the air mass was activated on the surface within the cyclone, lifted upwards and transported over several thousand kilometres to Hudson Bay

    Role of Biotransformation Studies in Minimizing Metabolism-Related Liabilities in Drug Discovery

    Get PDF
    Metabolism-related liabilities continue to be a major cause of attrition for drug candidates in clinical development. Such problems may arise from the bioactivation of the parent compound to a reactive metabolite capable of modifying biological materials covalently or engaging in redox-cycling reactions leading to the formation of other toxicants. Alternatively, they may result from the formation of a major metabolite with systemic exposure and adverse pharmacological activity. To avert such problems, biotransformation studies are becoming increasingly important in guiding the refinement of a lead series during drug discovery and in characterizing lead candidates prior to clinical evaluation. This article provides an overview of the methods that are used to uncover metabolism-related liabilities in a pre-clinical setting and offers suggestions for reducing such liabilities via the modification of structural features that are used commonly in drug-like molecules

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Astrocyte networks and intercellular calcium propagation

    Get PDF
    International audienceAstrocytes organize in complex networks through connections by gap junction channels that are regulated by extra-and intracellular signals. Calcium signals generated in individual cells, can propagate across these networks in the form of intercellular calcium waves, mediated by diffusion of second messengers molecules such as inositol 1,4,5-trisphosphate. The mechanisms underpinning the large variety of spatiotemporal patterns of propagation of astrocytic calcium waves however remain a matter of investigation. In the last decade, awareness has grown on the morphological diversity of astrocytes as well as their connections in networks, which seem dependent on the brain area, developmental stage, and the ultra-structure of the associated neuropile. It is speculated that this diversity underpins an equal functional variety but the current experimental techniques are limited in supporting this hypothesis because they do not allow to resolve the exact connectivity of astrocyte networks in the brain. With this aim we present a general framework to model intercellular calcium wave propagation in astrocyte networks and use it to specifically investigate how different network topologies could influence shape, frequency and propagation of these waves

    The Arctic

    Full text link
    peer reviewe

    The Physics of the B Factories

    Get PDF

    Experimental and theoretical study of S(IV)/S(VI) ratio in rain and cloud events

    No full text
    Production of atmospheric sulfate from SO_2 emitted into the troposphere is the key question we have to answer for assessing main problems like acid rain, forest decline and negative climate forcing which is believed to counteract the green house effect. About one decade ago many researchers agreed that sulfate formation occurs dominantly (80-90 %) via the aqueous phase chemical transformation, where the SO_2 dissociation is the first step. However, there is still a high uncertainty on the amount of sulfite (dissolved SO_2) being oxidized and on that removed by wet deposition in the reduced form S(IV) (sulfite). This important question, whose answer gives climate modellers an essential input on the percentage of emitted SO_2 converted into sulfate, was the aim of this work. This work presents experimental and theoretical results from studies of the ratio sulfite/sulfate in rainwater and cloudwater to assess the contribution of S(IV) to the total sulfur amount in the aqueous phase. Our findings suggest that considerable part of emitted SO_2 will not be transformed to sulfate especially in the sub-cloud layer. Therefore, the production of climate affecting sulfate aerosol via aqueous phase transformation of dissolved SO_2 is more limited than believed by climate modellers.SIGLEAvailable from: http://www.ub.tu-cottbus.de/hss/diss/fak4/tiankunze/pdf/disstiankunze.pdf / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore