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Abstract

Astrocytes organize in complex networks through connections by gap junction channels
that are regulated by extra- and intracellular signals. Calcium signals generated in individ-
ual cells, can propagate across these networks in the form of intercellular calcium waves,
mediated by diffusion of second messengers molecules such as inositol 1,4,5-trisphosphate.
The mechanisms underpinning the large variety of spatiotemporal patterns of propagation
of astrocytic calcium waves however remain a matter of investigation. In the last decade,
awareness has grown on the morphological diversity of astrocytes as well as their connections
in networks, which seem dependent on the brain area, developmental stage, and the ultra-
structure of the associated neuropile. It is speculated that this diversity underpins an equal
functional variety but the current experimental techniques are limited in supporting this
hypothesis because they do not allow to resolve the exact connectivity of astrocyte networks
in the brain. With this aim we present a general framework to model intercellular calcium
wave propagation in astrocyte networks and use it to specifically investigate how different
network topologies could influence shape, frequency and propagation of these waves.

1 Introduction

An aspect of astrocytic Ca2+ signals is their ability to propagate as regenerative Ca2+ waves both
intracellularly, i.e. within the same cell, and intercellularly, i.e. through different cells (Scemes
and Giaume, 2006). In this fashion, processing of synaptic activity by Ca2+ in one region of an
astrocyte can extend not only to other regions of the same cells but also to neighboring cells,
potentially adding nonlocal interactions to the repertoire of neuron-glia interactions (De Pittà
et al., 2012; Bazargani and Attwell, 2016).

Intercellular calcium waves (ICWs) have originally been reported in astrocyte cultures
(Cornell-Bell et al., 1990; Blomstrand et al., 1999; Scemes et al., 2000) and then confirmed
to also propagate in astrocytes in brain slices, (Sul et al., 2004; Schipke et al., 2002; Weissman
et al., 2004) as well as in live rodents both in physiological (Kurth-Nelson et al., 2009; Kuga
et al., 2011) and pathological conditions (Kuchibhotla et al., 2009). They can occur sponta-
neously (Nimmerjahn et al., 2004) or be evoked by exogenous stimuli (Ding et al., 2013; Sun
et al., 2013) and either be restricted to few astrocytes (i.e. < 10 − 30) (Sul et al., 2004; Tian
et al., 2006; Sasaki et al., 2011) or engulf hundreds of cells, while propagating in a regenerative
fashion (Kuga et al., 2011). The reasons for this variety of modes of propagation remain however
unknown. Besides differences in the experimental setups that include different brain regions,
stimulus protocols or cellular Ca2+ responses, growing evidence suggests a further, previously
unknown factor: the organization of astrocytes in variagated networks (Scemes and Giaume,
2006; Giaume et al., 2010).

Since the 1970s our understanding of intercellular communication between astrocytes has
fundamentally changed from the notion that they are organized as a syncytium – a multinucleate
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mass of cytoplasm resulting from the fusion of cells – to the recognition that they are organized
into networks with specific topology (Giaume et al., 2010). Neighboring astrocytes in different
brain regions are indeed connected at their periphery by gap junctions (GJCs) – channels that
allow the intercellular passage of ions and small molecules – and their anatomical domains only
minimally overlap, as if they were tiling the brain space (Giaume and McCarthy, 1996; Bushong
et al., 2002).

The mechanisms establishing whether two astrocytes are connected via GJCs are however
nontrivial and far from being understood (Giaume, 2010). For example, the expression of
connexins, in particular of Cx30 and Cx43 – the main proteins forming astrocytic GJCs (Giaume
et al., 1991; Rouach et al., 2002; Koulakoff et al., 2008) –, is known to change across different
brain regions (Blomstrand et al., 1999) and, in the case of Cx30 during development (Aberg
et al., 1999; Montoro and Yuste, 2004). Even within the same brain region, GJC expression
can considerably change across different structures. Indeed astrocytes within glomeruli of the
olfactory bulb appear to be more connected than outside of these structures (Roux et al., 2011),
and similar observations have been made in the somatosensory (barrel) cortex (Houades et al.,
2008). While it is believed that this peculiar organization could define precise cellular and
anatomical domains, neither the functional relevance of this specialized connectivity is known
nor how it could ultimately affect astrocytic Ca2+ signaling (Pannasch and Rouach, 2013).

Current experimental techniques do not allow to resolve the exact connectivity (topology)
of astrocyte networks in the brain and thus are not helpful to address these aspects. In this
perspective, computational approaches can provide a valuable tool to investigate general topo-
logical principles underpinning ICW propagation (or lack thereof) in astrocyte networks. Here
we review some of these approaches in the context of 2-dimensional and 3-dimensional astrocyte
networks, leveraging our modeling arguments on observations from dedicated experiments in
mixed neuron-glia cultures.

2 Astrocyte network modeling

2.1 General framework

Modeling of astrocyte networks may be pursued in different ways depending on what extent
we want to take into account astrocyte anatomy. Astrocytes have indeed complex anatomy,
with multiple primary processes irradiating from their somata and branching into secondary
and tertiary processes that end in a myriad of tiny lamellipodia and filopodia (Theodosis et al.,
2008). Accordingly, ICWs can be described as continuous waves that gradually propagate
through this complex medium ensuing from this intricate network of astrocytic processes. While
the mathematical theory of these waves is well developed (Falcke, 2004), this approach is however
limited by the lack of tools to resolve the fine structure of astrocytic secondary and tertiary
processes, except for simple setups of cell cultures (Kang and Othmer, 2009).

Alternatively, we may consider only somatic activation and describe ICWs as propagating
waves that hop from one astrocyte to neighboring ones in a coarse-grained fashion, that is
counting the number of cells that are activated by a wave rather than the spatial extent to which
the wave propagates through the intricate ensemble of astrocytic processes. In this fashion,
astrocyte somata are the nodes of the network, whose activation can be described in principle by
the (time) evolution of two state vectors: a = (C, . . .) which lumps the astrocyte’s intracellular
Ca2+ concentration, (C), along with possible other variables that control it, like gating variables
of intracellular channels that regulate Ca2+ release from the endoplasmic reticulum, or Ca2+

buffers that prevent Ca2+ accumulation in the cytosol (Falcke, 2004, p. 291); and s which
accounts for Ca2+-mobilizing signals that are responsible for regenerative propagation of ICWs.
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Denoting by Ni the set of astrocytes that are neighbors of cell i in the network, the equations
of these state vectors associated with cell i generally read

dai
dt

= Fi (ai, si) +Da
i (ai,aj , s|j ∈ Ni) (1)

dsi
dt

= Gi (ai, si) +Ds
i (si, sj ,a|j ∈ Ni) (2)

where the vector functions Fi and Gi are typically nonlinear, and the terms Da
i and Ds

i

account for exchange of chemical species (lumped in ai and si) between the i-th astrocyte and
its neighbors.

While equations 1 and 2 do not account for the totality of models of ICWs, they can
nevertheless describe a large class of whole cell models often used in the study of astrocytic
ICWs, some example of which we also consider in this chapter. In particular, depending on the
choice of the astrocyte model, besides cytosolic Ca2+, the components of the state vector a and
the vector function F can include the Ca2+ concentration in the endoplasmic reticulum (Dupont
and Goldbeter, 1993), the state variables of the Ca2+ release channels and their dynamics
(De Young and Keizer, 1992; Li and Rinzel, 1994; Tang and Othmer, 1994; Sneyd et al., 1998;
Höfer et al., 2002; Stamatakis and Mantzaris, 2006) . Similarly, in addition to the proper
Ca2+ mobilizing second messenger molecules, the state vector s and the vector function G may
also include the state variables for the kinetics of the receptors that control the generation of
those second messengers (Kummer et al., 2000; Höfer et al., 2002; Stamatakis and Mantzaris,
2006; Ullah et al., 2006a) as well as for other molecular signals involved in the intracellular
regulation of such messengers (Chay et al., 1995; Bennett et al., 2005). In many situations,
dynamics of the components of a and s are interdependent as mirrored by the fact that F
and G in the above equations are functions of both state vectors. This is obvious for second
messengers that control intracellular Ca2+ dynamics, but it is also often the case that Ca2+ itself
can regulate multiple aspects of the dynamics of those second messengers (Chay et al., 1995;
Höfer et al., 2002; Ullah et al., 2006a). This may also be the case for the two exchange terms
Da and Ds, which generally account for intra- and inter-cellular diffusion of Ca2+ along with
Ca2+-mobilizing second messenger molecules (Höfer et al., 2002; Stamatakis and Mantzaris,
2006; Edwards and Gibson, 2010), insofar as the rate of such diffusion may depend on these
latter, for example through Ca2+-dependent buffers (Kupferman et al., 1997; Sherman et al.,
2001) or secondary reactions involving second messenger molecules (Dupont and Erneux, 1997;
Stamatakis and Mantzaris, 2006).

In general, two are the routes for chemical exchange between astrocytes that are involved
in ICWs: one is by intracellular diffusion of Ca2+ and the second messenger molecule inosi-
tol 1,4,5-trisphosphate (IP3) through GJCs, the other one is by Ca2+-dependent ATP release
from astrocytes into the extracellular space (Scemes and Giaume, 2006). Both routes, although
brought forth by different biochemical reactions, promote IP3-triggered Ca2+-induced Ca2+ re-
lease (CICR) from the endoplasmic reticulum, which is the main mechanism of Ca2+ signaling
in ICWs (Nedergaard et al., 2003). This is obvious in the intracellular route whereby IP3 is
supplied to resting cells via GJCs. In the extracellular route instead, this is mediated by the
activation of metabotropic purinergic receptors which, akin to glutamatergic receptors (Chap-
ter 5), trigger IP3 production (and CICR) by Gq protein-mediated hydrolysis of phosphoinositol
4,5-bisphosphate (Scemes and Giaume, 2006).

From a modeling perspective, the fact that CICR is the main mechanism of Ca2+ signaling
in ICWs, allows to replace equation 1 by any model of CICR (Chapter 2). Moreover it is
also possible to neglect intracellular Ca2+ diffusion because free Ca2+ is rapidly buffered in the
astrocyte cytosol, thereby minimally leaking through GJCs (Allbritton et al., 1992; Sneyd et al.,
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1998; Höfer et al., 2002). This allows to simplify equation 1 by setting Da
i = 0, and only leaves

to specify si and equation 2. With this regard, both intracellular IP3 and extracellular ATP
can contribute together to ICW, with their relative involvement likely depending on regional,
developmental and experimental conditions (Scemes and Giaume, 2006). Nonetheless, because
hereafter we aim to characterize how different connections between astrocytes could affect ICW
propagation, we limit our analysis to the consideration of GJC-mediated IP3 diffusion only.
The reader who is interested in modeling purinergically mediated ICWs may refer to Bennett
et al. (2005) and MacDonald et al. (2008) for astrocyte network models that consider ATP
signaling only, or alternatively to Iacobas et al. (2006); Stamatakis and Mantzaris (2006); Kang
and Othmer (2009) and Edwards and Gibson (2010) for models that include extracelluar ATP
signaling in combination with intracellular IP3 diffusion.

2.2 Gap junction-mediated IP3 diffusion

In its most general form, the flux of IP3 (I) mediated by diffusion from one astrocyte i to a
neighboring one j (Jij) can be thought as some function φ of the IP3 gradient between the two
cells, i.e. ∆ijI = Ii − Ij (Crank, 1980), so that

Jij = φ(∆ijI) (3)

In the simplest scenario of short distance and/or fast diffusion, the intracellular environment
along the pathway from cell i to j may be assumed homogeneous so that φ is linear (Sneyd
et al., 1994; Falcke, 2004), and Jij is accordingly described by Fick’s first diffusion law, i.e.

Jij = −Fij ·∆ijI (4)

where Fij is the diffusion coefficient. In practice however, IP3 diffusion between astrocyte somata
could be more complicated. This is because connections between astrocytes through GJCs are
mostly at the cell distal processes (Giaume et al., 2010) whose complex morphology and narrow
intracellular space (Witcher et al., 2007; Pivneva et al., 2008) could considerably hinder IP3

diffusion from/to somata. Moreover, GJCs cluster at discrete sites of these processes (Nagy
and Rash, 2000), thereby constraining the diffusion pathway of IP3 from one cell to another.
Finally, IP3 production and degradation in the processes could either promote IP3 transfer
between cells or hamper it. In this fashion, the ensemble of astrocytic processes and GJCs
interposed between cell somata could equivalently be regarded as a diffusion barrier for IP3 ex-
change between cells, and accordingly, IP3 diffusion between cells could be inherently nonlinear.
This scenario is further substantiated by growing experimental evidence suggesting that GJC
permeability could be actively modulated by various factors, including different second messen-
gers (Harris, 2001). With this regard, the permeability of Cx43, a predominant connexin in
astrocytic GJCs (Nagy and Rash, 2000), could be modulated for example by phosphorylation
by protein kinase C (Bao et al., 2004; Sirnes et al., 2009; Huang et al., 2013). Because the
same kinase also takes part in IP3 degradation as well as in Ca2+ signalling (Codazzi et al.,
2001; Irvine and Schell, 2001), this possibility ultimately hints that GJC permeability could
also depend on IP3 signaling, whose dynamics is notoriously nonlinear (Chapter 5).

The above arguments support the choice of a nonlinear φ in equation 3. With this regard
then, we may assume that IP3 diffusion between two astrocytes, i and j, is a threshold function of
the IP3 gradient between somata of those cells, whose strength is bounded by the maximal GJC
permeability. In this way, a possible expression for Jij is (Goldberg et al., 2010):

Jij = −Fij
2

(
1 + tanh

(
|∆ijI| − Iθ

ωI

))
∆ijI

|∆ijI|
(5)

4



where Iθ represents the threshold gradient for which effective IP3 diffusion occurs; whereas ωI
scales how fast Jij increases (decreases) with ∆ijI (see Figure 1C). The parameter Fij , which
in the linear approximation sets the slope of Jij (equation 4), here fixes instead the magnitude
of the maximum diffusion flux.

2.3 Network topology

We have introduced so far a general framework to model individual astrocytes (as nodes) of
the network (equations 1 and 2), and their connections by GJC-mediated exchange of IP3

(equation 5). In order to complete our description of the astrocyte network we must then
specify the connections of each cell with others in the network.

Generally speaking, astrocytes networks can develop in one, two or three dimensions. The
simplest scenario of 1d networks, that is astrocyte chains, is useful to investigate how cellular
properties could affect ICWs. With this regard for example, cellular mechanisms controlling
CICR rate (Höfer et al., 2001; Ullah et al., 2006b), the type of encoding by Ca2+ oscillations
(Goldberg et al., 2010) or GJC permeability (Matrosov and Kazantsev, 2011) have been shown
to critically control the number of astrocytes recruited by ICWs. These results have also been
confirmed by 2d astrocyte network models, that are a valuable tool to investigate the rich
variety of patterns of propagation of astrocytic ICWs observed in cell cultures (Sneyd et al.,
1994, 1995a,b; Sneyd and Sherratt, 1997; Sneyd et al., 1998; Höfer et al., 2002; Shuai and Jung,
2003; Dokukina et al., 2008). The vast majority of these models however assumes a simplified
arrangement of astrocytes on a regular lattice focusing on the CICR nonlinearity to exploit
complex modes of ICW propagation. Only few studies have explored instead the potential role
of network topology on ICW nucleation and propagation. Dokukina et al. (2008) considered
for example small ensembles of three or four interconnected astrocytes, showing that only some
connection schemes, among all possible ones, can favor ICW generation, while variations in GJC
permeability can hamper ICW propagation regardless. More recently Wallach et al. (2014) and
Lallouette et al. (2014) attempted to extend this analysis to large 2d and 3d networks with the
aim to derive principles of astrocyte ICW propagation driven by network topological features.
The main results of these two studies are reproduced in the next section to illustrate our
modeling approach.

3 Biophysical modeling of intercellular Ca2+ waves

3.1 Ca2+ signaling in mixed neuronal and astrocytic cultures

As a first example of application of our modeling approach introduced in the previous section,
let us consider the task of modeling Ca2+ signaling in cultured mixed neuronal and astrocytic
networks. With this regard, we consider the experiments by Wallach et al. (2014) where this
common experimental setup was used in combination with electrical stimulation of neural activ-
ity, at rates from 0.2 to 70 Hz, to trigger astrocytic Ca2+ signaling. In those experiments, bath
perfusion with antagonists of astrocytic glutamate receptors was shown to block evoked Ca2+

activity in astrocytes, and so it was concluded that this signaling ensued from synaptically-
released glutamate, which likely activated astrocytic type I metabotropic glutamate receptors.
Based on these considerations, we replace a, s, F and G in equations 1 and 2 by the biophys-
ical model of glutamate-mediated astrocytic Ca2+ signaling discussed in Chapter 5 (see also
De Pittà et al., 2009), so that the generic i-th astrocyte in the cultured network is described by
(Figure 1B):

dCi
dt

= Jr(Ci, hi, Ii) + Jl(Ci)− Jp(Ci) (6)
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dhi
dt

= Ωh(Ci, Ii) (h∞(Ci, Ii)− hi) (7)

dIi
dt

= Jβ(Ci, Gi) + Jδ(Ci, Ii)− J3K(Ci, Ii)− J5P (Ii) +DIi (Ii, Ij |j ∈ Ni) (8)

where intercellular exchange of IP3 in the last equation is taken equal to the sum of individual
diffusion fluxes (equation 5) between astrocyte i and its connected neighbors, i.e.

DIi (Ii, Ij |j ∈ Ni) =
∑
j∈Ni

Jij (9)

To complete the model, we assume that glutamate concentration (Gi) in the medium surround-
ing astrocytic receptors instantaneously increases for each electrical pulse delivered at time
tk, proportionally to the available synaptic glutamate resources (g), and exponentially decays
between pulses at rate ΩG, mimicking glutamate clearance by diffusion in the extracellular
space (Clements et al., 1992), i.e. Gi(t) ≈

∑
k g(tk) exp (−Ω(t− tk)) Θ(t− tk) where Θ(·) is the

Heaviside function (Wallach et al., 2014).
To build realistic astrocytic networks, we then borrow the argument that astrocytes likely

tile the space of neuronal networks they are in by their non-overlapping anatomical domains
(Bushong et al., 2002). In this fashion, adjacent astrocytes are more likely to be connected by
GJCs than cells that are far apart (Giaume et al., 2010). Accordingly, we consider immunos-
taining images of the cultured networks, like the one in Figure 1A where somata of neurons and
astrocytes are respectively marked by red and green circles, and construct the Voronoi diagram
(gray lines) associated with every cell in the network. This diagram partitions the network
into as many regions as the cells taken into account, where each region may be regarded as
an estimate of the anatomical domain (blue lines) of the cell that it contains (Wallach et al.,
2014; Galea et al., 2015; Sánchez-Gutiérrez et al., 2016). Thus considering only the regions
associated with activated astrocytes, in our modeling we assume neighboring astrocytes to be
connected by GJCs only if their corresponding Voronoi regions share a border. We repeat this
procedure for all cell cultures imaged by Wallach et al. (2014) and consider Ca2+ signals evoked
by repetitive neural (synaptic) stimulation of our model astrocytes. Since we are interested in
the possible influences of different connections between astrocytes on their Ca2+ response, we
model all astrocytes in each culture identically, varying only their connectivity according to
their Voronoi tessellation.

Time-frequency characterization of astrocytic Ca2+ responses recorded in experiments by
Wallach et al. (2014) are shown in Figure 2A, where two classes of responses may be recognized.
Type I responses (top row) are characterized by astrocyte activation at relatively high frequency
of neural activation (top bars), while the frequency of Ca2+ oscillations does not significantly
change as the rate of neural stimulation increases. Type II responses instead, can be observed
for slightly lower frequencies of neural activation (bottom row), but are distinguished by Ca2+

oscillations whose frequency increases with neural stimulation, reaching values that are generally
higher than in type I responses.

Consideration of the distribution of the maximum frequency of Ca2+ oscillations of all
recorded responses in Figure 2B shows that roughly 80% of recorded astrocytes exhibited re-
sponses of type I (blue bars), with Ca2+ oscillating on average at most at ∼ 0.1 Hz (left peak
of the dashed curve); while the remaining astrocytes displayed type II Ca2+ responses (red
bars), with approximately doubled average maximum frequency, i.e. ∼ 0.2 Hz (right peak of
the dashed curve). In parallel it may be appreciated from the inset how this maximum fre-
quency of Ca2+ oscillations inversely correlates with the rate of neural stimulation, with high
frequency/type II-like Ca2+ oscillations triggered by lower rates of neural stimulation than low
frequency/type I-like oscillations.
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To check consistency of our modeling approach, we reproduce in Figures 2C and 2D the
previous results, yet based on Ca2+ responses generated by numerical simulations of our network
models built by the procedure above described. It may be appreciated how, despite some
inevitable quantitative differences, these figures qualitatively reproduce the essential features of
experimental observations on the two types of astrocytic Ca2+ responses presented in Figures 2A
and 2B, and thereby prove the effectiveness of our approach in modeling Ca2+ signaling in
cultured neuron-glial networks.

To characterize the effect of astrocytic connectivity on individual Ca2+ responses, we next
consider the maximum frequency of astrocytic Ca2+ oscillations simulated for different rates of
neuronal stimulation, distinguishing among responses based on the number of connections (k) of
individual astrocytes to unstimulated neighbors – the reason of this specific choice of neighbors
will be clarified in the following sections. The results of this analysis are reported in Figure 2E
where three observation may be made. First, it may be appreciated how unconnected astrocytes
(k = 0, dark blue curve) display the highest oscillation frequency for all rates of neural stimu-
lation. On the contrary, as the number of connections to unstimulated neighbors increases, the
maximum frequency of oscillations decreases. Second, the threshold rate of neural stimulation
to trigger astrocyte Ca2+ activation, tends to increase with the number of connections, being as
low as ∼ 2 Hz for unconnected astrocytes (leftmost blue circle) while increasing up to ∼ 10 Hz
for cells with k = 4 unstimulated connected neighbors (leftmost downward red triangle). Fi-
nally, the shape of the curves for different k values changes. For those astrocytes characterized
by k ≤ 3 the maximum frequency of Ca2+ oscillations nonlinearly increases with the rate of
neuronal stimulation, reaching values as high as ∼ 0.2 Hz in unconnected (k = 0) cells. But this
increase is progressively reduced as k grows larger, till it becomes almost negligible as in the
case of astrocytes with k = 4 (red curve), for which the maximum frequency of Ca2+ oscillations
is ∼ 0.1 Hz, independently of the rate of neural activity.

Combining these considerations with the experimental results in Figures 2A and 2B, it is
striking to correlate unconnected astrocytes, or astrocytes with a low number of unstimulated
connected neighbors, with low onset rate/high oscillation frequency/type II responses; and
vice versa, astrocytes with a high number unstimulated connected neighbors with high onset
rate/low oscillation frequency/type I responses. At the lower extremum of this spectrum of
astrocytic connectivity, we find unconnected astrocytes, which represent a minority, up to∼ 20%
of astrocytes in cell cultures (Rouach et al., 2000), to likely account for the 0.2 Hz peak in
the distribution of Ca2+ oscillations in Figure 2B. Conversely, at the higher extremum of the
spectrum we find those astrocytes with k = 4, insofar as they could mainly account, together
with some astrocytes with 2 ≤ k < 4, for the 0.1 Hz peak of that distribution.

To summarize, our hitherto analysis hints that the way astrocytes are connected can affect
how they respond to neural activity, controlling the threshold neural stimulation required for
their activation and the frequency of ensuing Ca2+ oscillations (Wallach et al., 2014). These
results have been obtained however in a somewhat simplified setup which is that of 2d-like
cultured astrocyte networks. In practice astrocytes are organized in three-dimensional net-
works in the brain, thus we following extend our biophysical modeling approach to address how
topological differences in 3d networks could ultimately influence astrocytic Ca2+ activity.

3.2 Ca2+ wave propagation in 3d astrocyte networks

To model realistic 3d astrocyte networks we need to specify not only the topology of these
networks but also, preliminarily, the arrangement of all cells in the 3d physical space. For
2d-like networks, such as the cultured networks modeled in the previous section, this task is
eased by the possibility to exactly map every cell position, for example by immunostaining and
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post-fixation optical microscopy of the network. However, this information is currently not
accessible experimentally for 3d astrocytic networks, although recent advances of connectomics
could soon fill in this gap (Kasthuri et al., 2015). On the other hand, astrocyte arrangement in
some brain regions has recently been characterized on statistical bases, and we following base
our modeling on these data as originally described by Lallouette et al. (2014).

We consider a pool of N = 113 astrocytes modeled by equations 6–8 and position them on
a cubic lattice with internode distance a. We then jitter each cell location in the lattice by
Gaussian noise with zero mean and variance σ2. In doing so, we choose a and σ2 to minimize
the squared error with respect to experimental values of mean (50 µm), minimum (20 µm), and
coefficient of variation of cell distance (∼ 0.25) (Sasaki et al., 2011, see Table C2 for specific pa-
rameter values). After positioning astrocytes in the physical space, we specify their connections,
considering different topologies (Figure 3A), ranging from (i) strongly spatially-constrained net-
works such as link radius networks, where an astrocyte connects to all cells located within a
given distance from its center, to (ii) completely spatially-unconstrained, random networks of
Erdős-Rényi topology. In between these extrema we also consider (iii) regular degree networks
where each astrocyte connects to its k nearest-neighbors, where k is the network degree k;
(iv) shortcut networks are obtained by rewiring a fraction of the connections (chosen at ran-
dom) of a regular degree network; replacing the destination cell of the original connections by a
randomly-chosen cell of the network (independently of the distance); and (v) spatial scale-free
networks where astrocyte degree follows a power-law distribution dependent on cell degree and
distance (see Appendix A).

Let us now consider the propagation of ICWs in the model networks and study how the
extent of this propagation, quantified by the number of astrocytes activated at least once by
an ICW (Nact), depends on network topology. With this aim, we trigger ICW propagation in
our model networks stimulating CICR in the cell in the center of the 3d space of the network
to minimize boundary effects (see Appendix A for details). Two examples of ICWs triggered in
this fashion are shown in Figure 3B for two different regular degree networks. The difference in
the number of activated cells, represented by green circles, is striking and suggests that simple
variations in network topology could account for large variability in ICW propagation. In this
example, it suffices indeed to reduce the mean degree of the network from 〈k〉 = 6 to 〈k〉 = 3 to
switch from local ICW propagation that recruits < 100 astrocytes (left panel), to regenerative
long-range ICW propagation which activates hundreds of cells (right panel).

The dependence of ICW extent of propagation on the network’s mean degree 〈k〉, namely
on the average number of connections per astrocyte, is further investigated in Figure 3C for
all network topologies. It may be appreciated how ICW propagation generally decreases with
larger 〈k〉: that is, increasing astrocytic connectivity hinders ICW propagation in our net-
works, independently of their topology. A closer inspection of the figure however allows distin-
guishing between two classes of networks based on ICW propagation: spatially unconstrained
(black markers) vs. spatially constrained networks (red markers). Here, we dub as “spatially-
unconstrained” those networks that can have long-distance connections, but where ICWs ac-
tivate only few tens of astrocytes. These include for example Erdős-Rényi networks (black
downward triangles), scale-free networks (black upward triangles) or shortcut networks with
rewiring probability ps = 0.3 (black diamonds). Conversely, “spatially constrained” networks
include link-radius (red circles) or regular-degree networks (red squares), as well as shortcut
networks with ps = 0 (red diamonds), whose connections between astrocytes are locally con-
fined, but where ICWs can recruit > 100 cells. Based on this classification, one may note that
the difference between spatially-constrained and spatially-unconstrained networks in terms of
the number of cells activated by ICWs can range up to ten folds.

A further useful measure to characterize network connectivity is the network’s mean shortest
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path L. Specifically, this measure can be adopted to quantify the degree of spatial constraining
of a network, inasmuch as L decreases when short-distance connections are rewired to long-
distances ones in networks of the same size (Boccaletti et al., 2006). In this perspective, the
differences in ICW propagation shown in Figure 3B can also be correlated with the fact the
network in the right panel has a larger value of L, and thus contains more short-distance
connections than the network in the left panel.

These considerations are further elaborated in Figure 3D where the extent of ICW prop-
agation is shown as a function of the network’s mean shortest path for different astrocytic
connectivities. In contrast with what is observed for the mean degree 〈k〉(Figure 3C), the
extent of ICW propagation generally increases with L. Nonetheless, our distinction between
spatially-constrained and spatially-unconstrained networks holds true. It may be noted in fact
that, as L increases, only link-radius, regular-degree and shortcut networks allow for ICWs that
recruit > 100 cells, whereas other network topologies do not. Large L values indeed imply
dense local, short-distance connections between cells, which can only exists in networks whose
topology is subjected to strong spatial constraints.

Overall, the analysis of ICW propagation in our 3d network models predicts that ICW
propagation is hindered in astrocytes networks with a large average number of connections
per cells and that contain long distance connections (Lallouette et al., 2014). These results
are somehow at odds with the notion, supported by studies on neuronal networks models,
that small values of mean shortest path and long-distance connections could instead promote
signal propagation (Zanette, 2002; Roxin et al., 2004; Dyhrfjeld-Johnsen et al., 2007). This
suggests that the principles at play in ICW propagation in astrocyte networks could be different
from those involved in action potential propagation in neuronal networks. We focus on these
principles in the next section.

3.3 Mechanisms of Ca2+ wave propagation

At the core of GJC-mediated Ca2+ wave propagation is Ca2+-induced Ca2+ release from the
endoplasmic reticulum in the activated astrocytes. This process requires an initial threshold
concentration of intracellular IP3 to be triggered (Chapter 2). Since in unactivated (resting)
astrocytes, endogenous production of IP3 by PLCδ is equilibrated by IP3 degradation, the only
other mechanism that in our model can account for intracellular IP3 variations is GJC-mediated
IP3 diffusion. Hence, only if the inward flux of IP3 by diffusion is sufficiently higher than its
outward flux, IP3 can accumulate in the cytosol of an astrocyte up to the threshold to trigger
CICR. When this occurs, the astrocyte gets activated and lies on the front of the ICW.

Consider the cartoon of ICW propagation in Figure 4A, where cells A, B and E lie on the
front of an ICW (green squares) that is propagating from left to right through the portion of the
depicted network. Because IP3 accumulation in these cells must precede their activation, we can
equally think of ICW propagation to be driven by the front of intercellular IP3 accumulation.
In this fashion, what determines if the ICW will propagate to cells C or D is whether IP3 will
next accumulate in those cells. With this regard, GJC-mediated diffusion of IP3 is such that IP3

travels against its gradient. Hence, IP3 accumulation in C or D depends on two diffusive fluxes:
(1) a large influx from activated cells A, B and E (thick red arrows) driven by the supposedly
larger IP3 concentration found in those cells with respect to unactivated cells C and D; and
(2) an outgoing flux to other unactivated cells in the network (blue arrows), which grows as
intracellular IP3 increases in C and D. In this example, the IP3 flux incoming to C or D ensues
from IP3 diffusion from only two activated cells (or “IP3 sources”), i.e. A and B for C; and A
and E for D. Similarly, because both C and D are connected only to two unactivated neighbors,
these latter, akin to “IP3 sinks,” control the strength of the IP3 flux coming out from C and D.
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In general though, it is reasonable to assume that the total inward and outward IP3 fluxes of
an astrocyte in the network depend on its number of connections, and are thus correlated with
the network’s mean degree 〈k〉.

To illustrate this, consider the same cells yet in a network where the mean degree is increased
to 〈k〉 = 6 (Figure 4B). Astrocytes A, B and E are now likely weaker sources of IP3 for cells C
and D, since there exist additional pathways for IP3 diffusion out of them which compete with
those from A, B and E to C and D (red arrows). In turn, C and D receive less IP3 so that
they are less likely to reach the IP3 threshold for CICR activation. This is also exacerbated
by the fact that these cells are somehow larger IP3 sinks, insofar as they experience a larger
outward flux of IP3 for their larger number of unactivated connected neighbors (blue arrows).

Similar arguments also hold in the case of a decrease of the network’s mean shortest path L.
In the previous section we saw how this quantity correlates with the existence of long-distance
astrocytic connections. Accordingly, we present in Figure 4C the same network of panel 4A
except for rewiring the connection between A and C (gray arrow) by a long-distance connection
between A and the astrocyte F (dark red arrow), which we imagine to be in some part of the
network far from the ICW front of propagation, and marked by the dashed double line. In this
scenario, cell C is clearly less likely to get activated for the reduced IP3 influx that it receives
due to the missing connection with cell A. The IP3 flux from A to F on the other hand, is also
likely not as effective in promoting CICR in cell F as it would be in C, not only because of a
missing contribution to IP3 influx in this cell from B, but also because cell F is in a remote part
of the network and, as such, connected to many more unactivated cells than C. In other words,
it is as if the introduction of the long-range connection between A and F prevented IP3 from
accumulating nearby the ICW front, dumping it in a remote, unactivated part of the network.

The interplay between the network’s mean degree and mean shortest path in the regula-
tion of IP3 sources and sinks that control ICW propagation, may be promptly elucidated by
monitoring intracellular IP3 dynamics during ICW propagation (Lallouette et al., 2014). Fig-
ure 4D shows snapshots of this dynamics at increasing time instants since stimulation onset
(at t = 0 in the red cell) for two different networks: a strongly spatially-constrained network
such as the square lattice with 〈k〉 = 4 (top row), and a less spatially-constrained network like
a shortcut network (bottom row), with the same mean degree, yet with ∼ 10% of connections
being between astrocytes far apart (examples marked in green). It may be appreciated how the
regular architecture of short-distance connections between cells of the square lattice promotes
a compact front of IP3 accumulation (brighter spots in the top heat maps) as the ICW prop-
agates. Conversely, this front is quickly lost for t > 14 s in the shortcut network, due to the
redistribution of IP3 to remote unactivated regions of the network by long-distance connections
(green arrows in the bottom heat maps).

Overall, our modeling of astrocyte networks predicts that the network’s mean degree and
mean shortest path could be important determinants of ICW variability of propagation inasmuch
as they could control the astrocyte’s propensity to activate and get recruited by an ICW. This
propensity ensues from intracellular IP3 balance which is regulated by a complex interplay of
production, degradation and diffusion fluxes brought forth by activated and unactivated cells. In
particular, the number of unactivated neighbors of a given astrocyte could dramatically control
its activation as they set the rate of IP3 drain from this cell by diffusion. This also accounts for
the results discussed in Section 3.1, where we put emphasis on the number of connections with
unconnected neighbors as a critical factor to shape the type of Ca2+ response of an astrocyte.
We can now explain the reason for this result hypothesizing that a cell connected with few
unactivated neighbors is likely to accumulate IP3 more easily than one with many unactivated
neighbors. In this way, that cell not only is likely to get activated faster than the other, but
also will display higher frequency of Ca2+ oscillations than the cell with many unactivated
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neighbors, since the frequency of these oscillations grows with intracellular IP3 concentration in
our model (equations 6–8, but see also De Pittà et al., 2009). Type II vs. type I responses are
thus mirrored by these two cells characterized by a different degree of unactivated neighbors.

3.4 Comparison of model predictions with experiments

An important prediction of our modeling is that the extent of ICW propagation could be highly
variable in astrocyte networks with realistic spatially-constrained topology, like link-radius or
regular connectivities, solely depending on the network’s mean degree 〈k〉. A 5-fold decrease
of 〈k〉 from 15 to 3 for example could result in a 100-fold increase in the number of astrocytes
recruited by an ICW, from few tens of cells to abot 500 astrocytes (Figure 3). Although no
experiments have so far investigated the relationship between ICWs and network topology, there
is contingent evidence that astrocytic connectivity could dramatically influence ICW generation
and propagation.

Variability of ICW propagation observed in experiments of different astrocyte populations
(Charles, 1998; Scemes and Giaume, 2006; Sasaki et al., 2011; Kuga et al., 2011) has indeed
been suggested to depend not only on the experimental setup but also on heterogeneities in the
connections between astrocytes (Scemes and Giaume, 2006). These heterogeneities have well
been characterized for astrocytes in the olfactory bulb which show preferential GJC coupling
within rather than outside of glomeruli (Roux et al., 2011). And similar observations have also
been made for astrocytes within somatosensory barrels (Houades et al., 2008) and in the stratum
pyramidale of the hippocampus (Rouach et al., 2008). In the hippocampus in particular, ICWs
could propagate for longer distance in the CA3 region than in the CA1 region (Dani et al.,
1992), and it is tempting to speculate that, in light of our modeling, these differences could
be due to the fact that CA3 astroytes are known to be less coupled by GJCs (i.e. their 〈k〉 is
smaller) than their CA1 homologues (D’Ambrosio et al., 1998).

In agreement with the latter hypothesis, is the evidence of reduced ICW propagation in
cultures of astrocytoma cells whose coupling was increased by forcing expression of the GJC
protein Cx43 (Suadicani et al., 2004). Moreover the fact that ICWs are observed much more fre-
quently in the developing brain (Parri et al., 2001; Weissman et al., 2004; Fiacco and McCarthy,
2006; Scemes and Giaume, 2006; Kunze et al., 2009) rather than in the brain of adult animals
(Fiacco and McCarthy, 2006; Scemes and Giaume, 2006) could also be due to developmental
differences in GJC expression. Cx30 expression in fact strongly develops between postnatal
day 10 (P10) (Aberg et al., 1999) and the third week of life (Rouach et al., 2002). Before
this period, neocortical astrocytes are known to be sparsely connected (Aberg et al., 1999) and
display ICWs (Iwabuchi et al., 2002). Conversely, during and after this period, the extent of
astrocytic ICW propagation seems to drastically reduce. For example, the same stimulation
protocol that triggers long-distance ICWs in astrocytes in the CA1 region of the hippocampus
before P10, does not after P10, when cell coupling by GJCs is increased (Aberg et al., 1999;
Fiacco and McCarthy, 2004).

There is also evidence that expression and permeability of GJC proteins, like Cx30 and Cx43,
are regulated by neurons (Rouach et al., 2000; Koulakoff et al., 2008; Roux et al., 2011), pos-
sibly by extracellular K+ (Pina-Benabou et al., 2001). Remarkably, increases of GJC coupling
mediated by extracellular K+ were shown to decrease ICW propagation in astrocyte networks
(Scemes and Spray, 2012), ultimately suggesting that the (mean) degree of connections of as-
trocytes in networks is not fixed but rather, depends on local conditions, possibly correlated to
ongoing neural activity. Inasmuch as the number of connections of an astrocyte could dictate
the characteristics of its Ca2+ response to neural activity (Section 3.1), the latter hypothesis
opens to the scenario that astrocytes in a network could display different Ca2+ responses that
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depend on activity-dependent modulations of their connectivity. This variegated Ca2+ signaling
could in turn account for variability of Ca2+ activation of individual cells, and ultimately reflect
into different modes of recruitment of those cells by ICWs as well as in ICW generation and
propagation themselves.

4 Simplified modeling of intercellular Ca2+ waves

4.1 The UAR astrocyte

The biophysical approach considered so far may be effective to model Ca2+ signaling and
propagation with realistic qualitative features, but has the drawback of limited mathematical
tractability for the strong nonlinearity born by the equations of IP3-triggered CICR (equa-
tions 6–8). Moreover it does not take into account some other aspects of astrocytic Ca2+ sig-
naling such as for example its complementary spontaneous (stochastic) generation which may
remarkably contribute to ICW nucleation (Skupin et al., 2008, but see also Chapter 4). To fill
in this gap, we present in the remaining part of this chapter, a further model of astrocytic ICW
propagation that includes stochastic Ca2+ activation and is amenable to analytical tractability,
while retaining elementary biophysical realism. The results following discussed were originally
presented in Lallouette et al. (2014) and Lallouette (2014).

We start from the consideration of “realistic” intracellular IP3 and Ca2+ dynamics simulated
by our biophysical model of equations 6–8. Figure 5A shows IP3 and Ca2+ traces associated
with two ICWs that travel from astrocyte 1 (top) to astrocyte 2 (bottom) via GJC coupling
(equation 5), respectively for 20 < t < 40 s and 110 < t < 120 s. One can associate each cell, at
any time, with one of three possible states: unactivated (U), activated (A) and refractory (R).
In the unactivated state, an astrocyte is at rest, meaning that its intracellular IP3 and Ca2+

concentrations are either at a low equilibrium, or subjected to some subthreshold dynamics
without CICR. Hence, either astrocytes in our example are unactivated before the arrival of
each ICW, i.e. for t < 20 s and for some time t < 110 s.

As intracellular IP3 crosses the threshold to trigger CICR (dotted lines), the astrocytes
get activated, displaying a large pulse-like increase of their intracellular Ca2+ (green-shaded
windows). For the previously discussed arguments however (Section 3.3), these cells can stay
in this active state of CICR generation as long as IP3 supply, by GJC-mediated diffusion from
other cells in the network, is large enough to guarantee intracellular accumulation of IP3 up
to the CICR threshold. This “threshold for IP3 supply,” is generally lower than the CICR
threshold (dashed lines), and can roughly be estimated by the sum of the resting intracellular
IP3 concentration (∼ 0.3 µm in our biophysical model) and the gradient ∼ 0.2 µm for which
nearly no GJC-mediated IP3 diffusion occurs (see equation 5 and Figure 1C).

Following activation, when IP3 drops below the supply threshold, either astrocytes are found
in a refractory state (red-shaded windows), whereby they do not transmit IP3 to other astrocytes
but cannot get activated again yet. Finally, as IP3 (and Ca2+) levels approach their resting
values, the cells recover to their unactivated state.

The cycling of an astrocyte through unactivated, activated, refractory and back to unac-
tivated states can be formalized in a simple Markov model, dubbed “UAR model” after the
initial of its three states, which is schematized on top of Figure 5B. There, we assume constant
rates kA→R and kR→U , for the transition of the cell respectively from activated to refractory,
and from refractory to unactivated, since these transitions are mainly dictated by the cell’s
biophysical properties (Chapter 5). Accordingly, we set kA→R = 1/τ̄A and kR→U = 1/τ̄R, where
τ̄A is the average time of astrocytic activation during ICW propagation, and τ̄R = T − τ̄A is
the average refractory period, estimated from the minimum period (T ) of Ca2+ oscillations in
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a single astrocyte.
In contrast, the transition from the unactivated state to the activated one depends on the

cell’s intracellular IP3 balance which is predominantly altered in resting conditions by IP3

diffusion from other cells taking part in ICW propagation. Thus we model the rate of this
transition, i.e. kU→A, as a function of the states of the cell’s neighboring cells. With this aim,
we define the efficacy of the i-th astrocyte to supply IP3 by

βi(t) =

{
1/NU

i (t) if i is in the A state at time t
0 otherwise

(10)

where NU
i (t) represents the number of unactivated neighbors of i at time t. The conditional

definition of βi(t) is motivated by our previous analysis where we noted that only activated
cells could effectively supply IP3 to unactivated cells that are found next on the pathway of a
propagating ICW. The exact functional form βi(t) is inspired instead by the observation that
the magnitude of IP3 supply from an activated astrocyte is inversely proportional to the number
of unactivated neighbors, in the assumption of identical neighbors and GJC connections of these
latter with cell i (see Section 3.3).

Building on our previous analysis, we assume that a given cell i gets activated only if the
cumulative IP3 supply from its GJC-connected neighbors (Ni in total) exceeds some threshold
for activation ϑi. Accordingly, we define its rate of transition from resting to activated as

kU→A(t) =

{
1/τ̄U if

∑
j∈Ni

βj(t) ≥ ϑi
0 otherwise

(11)

where τ̄U is estimated from simulations of the biophysical model as the average time needed
to activate an astrocyte during ICW propagation, starting from resting intracellular IP3 (and
Ca2+) levels. The threshold ϑi can instead be estimated by the minimum number of activated
vs. unactivated astrocytes that are connected to a given cell and are required for its activation.
In particular it may be shown that this threshold is almost linearly dependent on the cell’s
number of connections ki, so that we approximate it here by

ϑi = m · ki + q (12)

where the parameters m and q are numerically estimated and depend on the nature of GJC
connections (Lallouette et al., 2014).

The UAR model built in the above fashion is reminiscent of SIR models of disease spread
(Newman, 2003), and SER models of activity propagation in excitable media (Müller-Linow
et al., 2008), yet with an important difference. While in SIR and SER network models, activation
of one node of the network generally depends on that node’s immediate neighbor characterized
by one degree of separation from the node, in our description, activation of an astrocyte also
depends on cells with two degrees of separation from it. For the definition of βi (equation 10),
these cells control in fact the extent at which the connected neighbors of that astrocyte can
supply it by enough IP3 to trigger its activation.

To verify that the UAR model can reproduce essential predictions provided by our previ-
ous biophysical model, we use it to simulate ICW propagation in 3d networks with the same
topological features as those considered in Figure 3. The results of these simulations are re-
ported in panels C and D of Figure 5, where it may be seen that the functional dependence
of the extent of ICW propagation on the network’s mean degree (〈k〉) and mean shortest path
(L) qualitatively resembles the behavior previously observed for our biophysical model, both in
spatially-constrained and spatially-unconstrained networks (cp. panels C and D in Figure 3).
The only exception, possibly due to simplifying modeling assumptions on the choice of β, is
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represented by scale-free networks with short-distance connections (rc = 2 µm, upward red tri-
angles in Figure 5B) which allow ICW propagation for > 100 cells for low 〈k〉 values, whereas
in the biophysical model did not.

4.2 Shell propagation model

A close inspection of Figures 3C and 5C reveals a peculiar phenomenon: two network types with
very similar spatially-constrained topologies, like cubic lattices obtained from shortcut networks
with ps = 0 (and l = 1, see Appendix A), and regular degree networks with 〈k〉 = 6, exhibit
however a very different behavior, with the former supporting ICWs that could activate 10-fold
more cells than in the latter (Figure 6A, pink vs. dark green bars). It may be hypothesized
that, this is due to the fact that cubic lattices with 〈k〉 = 6 have a mean shortest path L ≈ 11,
while regular degree networks with same 〈k〉 values associate with L ≈ 8.8. Nonetheless, as
shown by the light green bar of the histogram in Figure 6A, reducing 〈k〉 to 4 in these latter
networks, so as to obtain L values comparable to those in cubic lattices, only marginally increases
the extent of ICW propagation in regular-degree networks. This ultimately suggests that the
topolgical differences in terms of different 〈k〉 and L values cannot fully explain variability of
ICW propagation and thus other aspects of the network’s architecture must be at play.

Both cubic lattices and regular-degree networks were constructed in a similar way: in the
former, astrocytes first were linked to their nearest neighbors and their positions were then
jittered; in the latter, the order of these operations was reversed. Thus differences in their
architectures are subtle and likely relate to the details of local connections of individual cells
with their neighbors. To describe these differences, we introduce the notion of propagation shell.
Specifically, we define the r-th shell with respect to a reference astrocyte, as the ensemble of
cells whose topological distance from that astrocyte is r.

Figure 6B shows the first four shells of a reference umber astrocyte (labeled by ‘0’) in a
square lattice. The first shell (brown cells with ‘1’ label) is made of the astrocytes that are
directly connected with astrocyte ‘0’. The second shell (orange cells with label ‘2’) is composed
instead by all the cells with two degrees of separation from the reference astrocyte, that is the
shortest path to go from them to astrocyte ‘0’ is 2; the third shell (light orange) is made of all
astrocytes with three degrees of separation from cell ‘0’ and so on.

When stimulating astrocyte ‘0’, the ICW that generates from this cell and propagates to its
periphery, may be thought as the result of the progressive activation of shells 1, 2 and so on.
Figure 6C illustrates this concept, showing in green the fraction of astrocytes per shell that get
activated by the ICW. It may be noted from Figure 6D that the cells in the first two shells are
nearly all activated but, as the wave propagates to outer shells (i.e. r > 2), the ratio of activated
cells per shell (ρr) quickly drops, ultimately halting ICW propagation beyond the fourth shell.

By the same arguments previously exposed in Section 3.3, what determines the extent of
activation of a shell, and whether an ICW propagates to the next one, is respectively the IP3

supply to and from that shell. This supply can be estimated by means of the UAR model,
resolving for the network’s shell structure, including the number of cells per shell (Nr), and the
fraction of activated astrocytes per shell (ρr) against the number of unactivated cells therein
(N̂r). Denoting by Ψtot

r+1 the average total IP3 supply to an astrocyte in shell r + 1 from shell
r, this quantity may be regarded as the sum of two terms in general: (i) an endogenous IP3

supply by IP3 production and diffusion from shell r, Ψout
r ; and (ii) an exogenous IP3 supply to

shell r + 1 directly due to the stimulation protocol, i.e. Ψstim
r+1 – clearly, the farther the shell is

from the stimulated cell, the lesser is the IP3 directly supplied to it by the applied stimulus.
That is

Ψtot
r+1 = Ψout

r + Ψstim
r+1 (13)
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Then, the IP3 supplied by the r-th shell can be thought to be proportional to the ratio between
the number of activated astrocytes (or IP3 sources) in that shell and the number of unactivated
cells (or IP3 sinks) in the proximal shell r + 1, i.e.

Ψout
r = ρr

Nr

Nr+1
· g(r, ρr) (14)

where the multiplicative factor g(r, ρr) accounts for the size of shells r − 1 and r + 1 and the
connections of cells therein, with themselves and with cells in other shells. Finally, based on
the previous equations, the fraction of activated cells in shell r + 1 is given by

ρr+1 =
1

2

(
1 + tanh

(
Ψtot
r+1 − ψθ(〈k〉)

δ

))
(15)

where ψθ(〈k〉) is homologous of the activation threshold ϑ in equation 11 for the r-th shell. The
fraction of activated astrocytes per shell is thus a sigmoid function of IP3 supplied to that shell
by inner shells. It approaches 1 when this IP3 exceeds the threshold ψθ(〈k〉), which corresponds
to the ideal scenario of all cells in the shell being activated, and to an ICW that propagates to
shell r + 1 in a perfectly regenerating fashion. Conversely, it tends to 0 when Ψtot

r+1 < ψθ(〈k〉),
ensuing in partial ICW propagation to shell r+ 1, which possibly preludes to wave death in the
following shells. The slope of the transition between partial (vanishing) ICW propagation (i.e.
ρr+1 → 0) and fully regenerative ICW propagation (ρr+1 → 1) is controlled by the parameter
δ. The detailed derivation of equations 13–15 may be found in the online Supplementary Text
(Appendix ??).

Using equation 15, we can recursively compute the activation ratio of concentric shells of
ICW propagation, ultimately estimating the extent of ICW propagation without the need to
simulate whole networks. Figure 6E reports the results of this estimation, where the extent
of ICW propagation is quantified by the number of astrocytes expected to get activated by
an ICW, i.e. Nsim =

∑
rNrρr. Comparison of Nsim values obtained by our shell description

of ICW propagation (dashed lines) with those for the number of activated astrocytes from
simulations of the biophysical model (data points from Figure 6C), reveals a close correspondence
of our analytical estimation with simulations. Further analysis (Figure 6F) also shows that the
estimated fraction of activated astrocytes per shell is in good agreement with the majority of
data from ICW propagation simulated in biophysical network models.

Overall, the analysis presented in this section puts emphasis on the importance of regional
features of cell connectivity mirrored by the shell structure of astrocyte networks, as a crucial
factor in shaping ICW propagation. This propagation appears to depend on the shell-to-shell
GJC-mediated diffusion IP3 by equation 15 in a strongly nonlinear fashion, with inner shells
driving activation of outer shells during ICW radial propagation towards the network periphery
of a stimulated cell. In this fashion, as far as the activation of inner shells is guaranteed, an ICW
could regenerate and propagate across large portions of the network, if not the whole network.
On the other hand, a simple change of the stimulus protocol, resulting in an alteration of IP3

supply that can no longer robustly activate astrocyte shells that are proximal to the stimulus
site, would cause ICWs to propagate only for short distances. This could ultimately explain
why the same astrocyte networks some times display local Ca2+ activity, spatially confined to
ensembles of few activated cells, (Sasaki et al., 2011) and some other times long distance ICWs,
engulfing hundreds of cells (Kuga et al., 2011).

5 Conclusions

The computational arguments presented in this chapter pinpoint to topological determinants
of signal propagation in astrocyte networks that substantially differ from those at play in neu-
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ral networks. While neurons communicate by electrical signals using distinct pools of neuro-
transmitters, found at each of their synapses, astrocytes propagate Ca2+ signals by a complex
exchange of IP3 fluxes, controlled by the exact spatial arrangement of IP3 sources and sinks
ensuing from activated vs. unactivated cells. Hence, while increasing the number of connected
neighbors in a neural networks would be tantamount, in our description, to add new synapses
thereby increasing cell excitability; in an astrocyte network instead, this could reduce IP3 supply
to individual cells, hindering cell activation and ICW propagation.

In agreement with this view, increasing the average number of connections per cell (i.e. the
network’s mean degree) in models of networks of excitatory neurons was suggested to promote
neural synchronization, that is the coherent activation of neuronal ensembles (Wang et al.,
1995; Golomb and Hansel, 2000; Olmi et al., 2010; Luccioli et al., 2012; Tattini et al., 2012). In
contrast, we showed how cell hubs (that is, cells with a large number of connections), and long-
distance connections between astrocytes could dramatically break ICW fronts, substantially
reducing the extent of their propagation. These differences in terms of topology vs. dynamics
in neural vs. astrocyte networks brought forth in this chapter, contribute to shed new light on
functional and organizational principles beyond astrocyte networks whose topological features
are notoriously very different from those on neural networks (Bushong et al., 2002).
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Appendix A Simulations of 3d astrocytic networks

A.1 Construction of networks with different topology

The five different topologies for 3d astrocytic networks considered in this chapter were con-
structed as following detailed (see also Lallouette et al., 2014).

• Link radius networks were constructed connecting each astrocyte i to all cells contained in
a sphere of radius d centered on i. The degree distribution of these networks displays some
variability around the mean degree 〈k〉, due to preliminary jitter of astrocyte locations in
the absence of highly connected cells.

• Regular degree networks were developed connecting each astrocyte to its k nearest neigh-
bors while forbidding links longer than dmax = 150 µm. In doing so, connections were
established in kreg iterations to avoid directional biases. Namely, all nodes were randomly
taken once per iteration m and linked to the nearest node i with degree ki < m ≤ kreg
and located within dmax from the selected node.

• Shortcut networks were constructed in a way similar to small-world networks (Watts,
1999). We started by positioning astrocytes on a cubic lattice with internode distance a,
linking each cell to its nearest neighbors at distances that were multiples of a up to l
times. We then rewired each connection with probability ps thereby randomly assigning
one of its endpoint. Finally, we jittered the nodes positions as explained in the main text.

• Spatial scale-free networks were incrementally built by spatially-constrained preferential
attachment (Barthélemy, 2010). Briefly, astrocytes were progressively included in the
network, one by one, and connected with msf cells. Each connection between a new
astrocyte i and a target cell j was established with probability pi→j ∝ kj exp(−dij/rc);
where kj is the degree of the target cell j, dij represents the Euclidean distance between
astrocytes i and j, and rc sets the range of interaction between cells in the space. Small
values of rc result in connections between astrocytes that are limited to their neighbors,
while large rc values allow establishing long distance connections. Spatially-constrained
preferential attachment may also produce some highly-connected astrocytes or ‘hubs’.

• Erdős-Rényi networks were built by linking each astrocyte pair with probability p, inde-
pendently of their distance and existing degree. These networks are the only ones in our
analysis that do not bear any spatial constraint.

Depending on whether rc (respectively ps) is large or not, spatial scale-free networks (re-
spectively shortcut networks) can be regarded either as spatially-constrained networks or as
spatially-unconstrained networks. Due to random wiring, some of the above procedures could
result in disconnected networks. To minimize this scenario, we iterated the wiring procedure
to ensure that, in our networks, disconnected node pairs accounted for < 2% of all possible
node pairs. Parameters used to build the different networks in the simulations discussed in
Section 3.2 are detailed in Table C2.

A.2 Numerical procedures

Each network model consisted of 3N = 3993 ODEs which we numerically solved by 4th order
Runge-Kutta integration with a time step of 0.01 s. The extent of ICW propagation (Nact) was
quantified by the number of astrocytes that were activated at least once, where an astrocyte
was considered to be activated whenever its Ca2+ concentration exceeded 0.7 µm. Each network
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model was produced into n = 20 different realizations, and mean degree (〈k〉) and mean shortest
path length (L) of each network model were averaged over realizations.

To generate ICWs, we stimulated the cell whose location was the closest to, if not coincident
with the center of the 3d cubic lattice containing the network. Stimulation was delivered for
0 ≤ t ≤ 200 s connecting an IP3 reservoir of 2 µm to the central cell and allowing IP3 diffusion
into that cell according to equation 5.

A.3 UAR model simulations

In networks with UAR astrocytes, we considered step increases of time by ∆t = 0.1 s, simulating
a transition from a state x to a state y (with rate kx→y and x, y = U, A, R), every time that
a random number r drawn from a uniform distribution in [0, 1] at each ∆t was such that
r ≤ kx→y ·∆t. In those networks, stimulation of the central cell was deployed forcing activation
of its connected neighbors, since this was observed to be case in the majority of networks with
biophysically-modeled astrocytes.

Appendix B Supplementary online material and software

Detailed derivation of the shell model (Section 4.2) can be downloaded from https://github.

com/mdepitta/comp-glia-book. The file Shell.derivation.pdf is provided along with the
original LATEX files within the doc folder associated with this chapter. In the same folder the
WxMaxima file ODEsystem.wxmx is also provided. This file was used to analytically solve the ODE
system at the core of the derivation of the shell model (equations 1–3 in the supplementary online
text).

Within the same repository the code used for simulations of astrocyte networks presented
in this chapter is also provided. The core source code is implemented in C++ and is located in
src folder. This code must preliminarly be compiled by make from this directory. The Python
script, RunSimulations.py relies on the compiled source code to generate all data sets to plot the
figures of this chapter. Depending on the hardware configuration, it might take up to a day to
complete all the simulations involved. By default, the software will attempt using all available
cores on the local machine. Individual figures can be generated by Figure_3.py for Figure 3C
and D; Figure_5.py for Figure 5C and D; and Figure_6.py for Figure 6E and F.
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Appendix C Model parameters used in simulations

Table C1: Parameters of the biophysical model.

Symbol Description Value Units
GChI ChI

IP3R kinetics

d1 IP3 binding affinity 0.13 µm
O2 Inactivating Ca2+ binding rate 0.62 0.2 µm−1s−1

d2 Inactivating Ca2+ binding affinity 1.049 µm
d3 IP3 binding affinity (with Ca2+ inactivation) 0.9434 µm
d5 Activating Ca2+ binding affinity 0.08234 µm

Calcium fluxes

CT Total ER Ca2+ content 2 µm
ρA ER-to-cytoplasm volume ratio 0.185 –
ΩC Maximal Ca2+ release rate by IP3Rs 18.56 6 s−1

ΩL Maximal Ca2+ leak rate 0.3416 0.11 s−1

OP Maximal Ca2+ uptake rate 2.7846 0.9 µms−1

KP Ca2+ affinity of SERCA pumps 0.05 µm
IP3 production

Oδ Maximal rate of IP3 production by PLCδ 0.4641 0.7 µms−1

Kδ Ca2+ affinity of PLCδ 0.1 µm
κδ Inhibiting IP3 affinity of PLCδ 1.5 µm
Oβ Maximal rate of IP3 production by PLCβ 1.105 – µms−1

KG Glutamate affinity of the receptor 1.3 – µm
KL Ca2+/PKC-dependent inhibition factor 10 – µm
KKC Ca2+ affinity of PKC 0.6 – µm

IP3 degradation

Ω5P Maximal rate of IP3 degradation by IP-5P 0.793 0.21 s−1

O3K Maximal rate of IP3 degradation by IP3-3K 13.923 4.5 µms−1

KD Ca2+ affinity of IP3-3K 1 µm
K3K IP3 affinity of IP3-3K 0.7 µm

IP3 diffusion

F GJC IP3 permeability 3.64 2 µms−1

Iθ Threshold IP3 gradient for diffusion 0.15 0.3 µm
ωI Scaling factor of diffusion 0.05 µm

Synaptic glutamate release

Ωf Rate of synaptic facilitation 2 – s−1

Ωd Rate of recovery of released synaptic vesicles 1 – s−1

ΩG Glutamate clearance rate 60 – s−1

U0 Basal probability of synaptic glutamate release 0.25 – –
ρC Ratio of synaptic vesicles and mixing volumes 6.5× 10−4 – –
GT Glutamate content of readily releasable vesicles 200 – mm
ρso Glutamate spill over fraction to the astrocyte 0.075 – –
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Table C2: Spatial and topological parameters of the astrocyte network model.

Symbol Description Values Units
min step max

Spatial organization

a Internode distance 70 µm
σ2 Variance of the gaussian noise 55 µm

Network topology

k Degree of regular networks 3 1 15 –
d Linking distance for link radius networks 80 5 120 µm
rc Spatial parameter for spatial scale free networks 2 1 4 µm

5 20 105 µm
msf New links for spatial scale free networks 2 1 5 –
l Linking distance for shortcut networks 1 1 3 –
ps Edge rewiring probability for shortcut networks 0 0.02 0.1 –

0.2 0.1 0.4 –
p Linking probability for Erdős-Rényi networks 5

N−1
1

N−1
15
N−1 –

Table C3: UAR model parameters.

Symbol Description Values Units

τ̄U Average time needed to activate an astrocyte 7 s
τ̄A Average activation time of an astrocyte 9 s
τ̄R Average refractory time of an astrocyte 6.5 s
m Slope of the relationship between ki and ϑi 0.02 –
q Intercept of the relationship between ki and ϑi 0.205 –

Table C4: Shell model parameters.

Symbol Description Values Units
ΩI
F Effective degradation rate 2.9883 –
S IP3 supplied to the stimulated cell 2169.32 –
η Power law exponent 2.62 –
A Slope of ψθ(〈k〉) 2.622 · 10−15 –
B Intercept of ψθ(〈k〉) 0.35061 –
δ Slope of the shell activation function 0.05388 –
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Figure 1: Modeling astrocyte networks. A Double immunostaining of a cultured neuron-glial
network by the neuronal marker NeuN (red) and the astrocytic marker GFAP (green). Astrocyte
anatomical domains (like the one delimited in blue) are reconstructed by Voronoi tessellation
(gray lines) of the network, only considering neurons and astrocytes activated by electrical
stimulation (see Wallach et al., 2014, for details). Neighboring astrocytes are assumed to be
connected by GJCs when their Voronoi cells are contiguous. B Schematic representation of the
biophysical network model. Individual astrocytes are described by the well known ChI model for
astrocytic Ca2+-induced Ca2+ release from the endoplasmic reticulum (De Pittà et al., 2009),
while their coupling with neighboring cells is by intercellular IP3 diffusion by GJCs (DI). In
some simulations, we also consider glutamate-mediated IP3 production by PLCβ to account
for synaptically-evoked Ca2+ signals (not shown). C Differently from classic (linear) diffusion
(yellow line), IP3 diffusion between astrocytic somata is modeled by a nonlinear (sigmoid)
function of IP3 gradient between cells. (Inset) This choice takes into account that most GJCs
(in red) are in the processes of astrocytes at the border of their anatomical region.
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Figure 2: Regulation of Ca2+ oscillations in individual astrocytes by GJCs. A Time-frequency
analysis of Ca2+ oscillations evoked in individual astrocytes in cell cultures by repetitive elec-
trical stimulation of neurons at different rates (“Stim.”, top bars). Some astrocytes display
low frequency oscillations (Type I responses, top row), while others show higher oscillation
frequencies that increase with the rate of neural stimulation (Type II responses, bottom row).
B Distribution of maximal frequencies of recorded astrocytic Ca2+ oscillations. Type I oscilla-
tions (blue bars) and Type II responses (red bars) are neatly separated and fitted by Gaussian
distributions with different mean and variance (black dashed curves). (Inset) The frequency of
Ca2+ oscillations is negatively correlated with the threshold rate of neural stimulation (“On-
set freq.”) required to trigger them, so that high frequency/Type II responses are generally
observed at lower onset rates of neural activation than low frequency/Type I responses. Grey
circles denote single astrocytic responses; black dots represent means for representative onset
rates; error bars denote standard deviation. C, D Results from numerical simulations of astro-
cytic networks reconstructed by immunostaining images (see Figure 1). E Maximum frequency
of simulated Ca2+ oscillations as a function of the rate of neural stimulation for astrocytes
with different number of connections with unstimulated neighbors (k). Increasing the stimulus
rate increases the frequency of Ca2+ oscillations which plateaus for high rates of stimulation,
independently of k. The height of this plateau however strongly depends on the number of con-
nections between astrocytes so that unconnected astrocytes (k = 0) tend to oscillate much faster
than connected ones (k > 0). Data points±errorbars denote mean values±standard deviation
for n = 130 simulated astrocytes. Adapted from Wallach et al. (2014).
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Figure 3: ICW propagation in 3d astrocyte networks. A Modeling procedure. (Middle panel)
Astrocytes (circles) are first positioned on a cubic lattice, and their positions are randomly
jittered to match experimentally-derived statistics of intercellular distances. (Other panels)
Then they are connected by GJCs (black lines) according to different topologies (shown in 2d
for clarity). Red links denote long-distance connections; cells in green are connected neighbors
of blue cells. B Simulations of ICWs in two regular networks with different mean degree (〈k〉)
and mean shortest path length (L). Both networks contained the same number of identical
cells (N = 113), and ICW stimulation was delivered to the central red cell in the same fashion
(Appendix A), so that the 10-fold difference in the number of cells activated by the two ICWs
(Nact, green circles) only depended on different connections between the two networks. C Extent
of ICW propagation as a function of the network’s mean degree 〈k〉 and D mean shortest path
L. In both cases, spatially-constrained topologies (red markers e.g. link radius, regular degree
and shortcut with ps = 0 or 〈k〉 = 4) can support ICW propagation up to several hundreds of
astrocytes, whereas spatially-unconstrained topologies cannot (black markers e.g. Erdős-Rényi,
shortcut with ps > 0, scale-free). Scale-free networks in D (dark red upward triangles) can either
be spatially constrained or unconstrained, depending on the value of rc. Data points±errorbars
correspond to mean values±standard deviation over n = 20 different realization of the network
for fixed statistical parameters. Adapted from Lallouette et al. (2014). Model parameters as in
Table C1.
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Figure 4: GJC-mediated mechanism of ICW propagation. A Propagation of an ICW front
(green squares) to an astrocyte depends on IP3 fluxes mediated by IP3 diffusion that comes
in (red arrows) and out of the cell (blue arrows). Unactivated cells (gray circles) act as “IP3

sinks,” thereby hindering intracellular IP3 accumulation. In this fashion, compared with cell A,
cell B is less likely to activate other cells for its larger number of connections with unactivated
cells. Vice versa, cell D is more likely to get activated than cell C because has fewer unactivated
neighbors than this latter. B An increase of the network’s mean degree to 〈k〉 = 6 introduces
additional connections that reduce incoming IP3 fluxes to cells C and D, making these cells less
likely to get activated (and thus to get recruited by the ICW). C Similarly, replacing the local
connection between A and C (gray arrow) by a long-distance connection between A and F (dark
red arrow), makes cell C receive less IP3, “dumping” the missing IP3 flux to an unactivated
region of the network far from the wave front (separated by double dashed lines). D Snapshots
of intracellular IP3 dynamics at different time instants in two 2d networks shown in the leftmost
panels). In the shortcut network with ps = 0.1, the presence of long-distance connections (green
edges and arrows) makes IP3 diffuse away from the wave front (bottom row, compare snapshots
for t = 14 s and t = 29s). This ultimately results in a considerably lower number of astrocytes
activated by an ICW (Nact, rightmost vertical bars) with respect to the square lattice. ICW
propagation was triggered stimulating the astrocyte in red (leftmost panels) for 0 ≤ t ≤ 25 s
(bottom red bar). Reproduced with permission from Lallouette et al. (2014).
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Figure 5: UAR model of ICW propagation. A, B Recruitment of an astrocyte by an ICW may
be regarded as a three-state process, as exemplified for two connected astrocytes (cell 1, top
row ; cell 2, bottom row). Astrocytes are in the unactivated state (U) when at rest. Upon arrival
of an ICW, their intracellular IP3 (red traces) crosses the threshold for CICR initiation (dotted
line) and cell 1, followed by cell 2, get activated (A, green-shaded windows), which is marked by
a pulse-like increase of intracellular Ca2+ in these two cells (blue traces). Following activation,
each cell recovers to rest through a refractory period (R, red-shaded windows), when their in-
tracellular IP3 falls below a supply threshold (dashed line). Time constants for each transition
may be estimated as following: τU coincides with the delay between the Ca2+ increases in cell 1
and in cell 2; τA is estimated by the time interval from the beginning of the Ca2+ elevation to
the point where IP3 gets below the diffusion threshold; finally, τR is derived from τA + τR = T ,
where T = 16 s is the minimum period of Ca2+ oscillations in the single astrocyte. Transition
rates used in the simulations are obtained averaging over all τ values obtained in simulations
of the biophysical model in Figure 3. C, D ICW propagation for the same networks of Fig-
ure 3 (panels C and D), where astrocytes are modelled instead by the UAR description. The
extent of ICW propagation (Nact: number of activated astrocytes) generally mirrors qualitative
and quantitative characteristics of ICWs simulated in our biophysical network models. Data
points±errorbars: mean values±standard deviation over n = 20 networks of similar topology.
Parameters of the biophysical model and the UAR model are reported in Table C1 and Table C3
respectively. Adapted from Lallouette et al. (2014).
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Figure 6: Shell model of ICW propagation. A Quantification of ICW propagation by the
number of activated cells (Nact) in cubic lattices (pink bar) vs. regular networks (green bars).
The 10-fold larger number of activated astrocytes in cubic lattices than in regular networks
cannot simply be ascribed to differences in the mean degree (〈k〉) and shortest path length (L,
bottom values). Cubic lattices were constructed by shortcut networks with ps = 0 and l = 1
(see Appendix A). B–D Shell model of propagation. B Sample decomposition of a network
neighbor around cell ‘0’ (umber circle) by four concentric shells (colors/labels from brown/‘1’
to pale orange/‘4’). C Nodes are grouped by their shell distance r from the reference cell ‘0’. In
this fashion, ICW propagation is by activation of astrocytes (green circles) from inner to outer
shells (i.e. from cell ‘0’ to shell ‘4’ and beyond). D At early stages of propagation, the fraction
(ρr) of activated astrocytes per shell is close, if not equal to unity (i.e. all cells are activated
– N r cells in total per shell), but it decreases as the wave propagates through outer shells.
For a given shell r + 1, this fraction can be recursively expressed as function of the fraction of
activated cells in the inner shell r (top equation). The total number of activated cells by shell
propagation of an ICW is quantified by Nsim (bottom formula). E The number of activated cells
(Nsim) and F the fraction of activated cells (ρr) estimated by the shell model (dashed lines) are
superimposed on values from simulations of biophysical networks (data points from Figure 3C).
The shell model of propagation well predicts ICW extent simulated by biophysical modeling.
Model parameters as in Table C3.
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and Steinhäuser, C. (2009). Connexin expression by radial glia-like cells is required for
neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA, 106(27):11336–11341.

Kupferman, R., Mitra, P. P., Hohenberg, P. C., and Wang, S. S. (1997). Analytical calculation
of intracellular calcium wave characteristics. Biophysical Journal, 72(6):2430–2444.

Kurth-Nelson, Z. L., Mishra, A., and Newman, E. A. (2009). Spontaneous glial calcium waves
in the retina develop over early adulthood. J Neurosci, 29(36):11339–11346.

Lallouette, J. (2014). Modeling calcium responses in astrocyte networks: Relationships between
topology and dynamics. PhD thesis, INSA de Lyon.
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Müller-Linow, M., Hilgetag, C. C., and Hütt, M.-T. (2008). Organization of excitable dynamics
in hierarchical biological networks. PLoS Comput. Biol., 4(9):e1000190.

Nagy, J. I. and Rash, J. E. (2000). Connexins and gap junctions of astrocytes and oligodendro-
cytes in the CNS. Brain Res. Rev., 32(1):29–44.

Nedergaard, M., Ransom, B., and Goldman, S. A. (2003). New roles for astrocytes: Redefining
the functional architecture of the brain. Trends in neurosciences, 26(10):523–530.

30



Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review,
45(2):167–256.

Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. D., and Helmchen, F. (2004). Sulforhodamine 101
as a specific marker of astroglia in the neocortex in vivo. Nat. Methods, 1(1):31–37.

Olmi, S., Livi, R., Politi, A., and Torcini, A. (2010). Collective oscillations in disordered neural
networks. Phys. Rev. E, 81(4):046119.

Pannasch, U. and Rouach, N. (2013). Emerging role for astroglial networks in information
processing: from synapse to behavior. Trends. Neurosci.

Parri, H. R., Gould, T. M., and Crunelli, V. (2001). Spontaneous astrocytic Ca2+ oscillations
in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci., 4(8):803–812.

Pina-Benabou, M. H. D., Srinivas, M., Spray, D. C., and Scemes, E. (2001). Calmodulin kinase
pathway mediates the K+-induced increase in gap junctional communication between mouse
spinal cord astrocytes. J. Neurosci., 21(17):6635–6643.

Pivneva, T., Haas, B., Reyes-Haro, D., Laube, G., Veh, R., Nolte, C., Skibo, G., and Ket-
tenmann, H. (2008). Store-operated Ca2+ entry in astrocytes: different spatial arrangement
of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium,
43(6):591–601.

Rouach, N., Avignone, E., Même, W., Koulakoff, A., Venance, L., Blomstrand, F., and Giaume,
C. (2002). Gap junctions and connexin expression in the normal and pathological central
nervous system. Biol. Cell., 94(7-8):457–475.

Rouach, N., Glowinski, J., and Giaume, C. (2000). Activity-dependent neuronal control of
gap-junctional communication in astrocytes. J. Cell. Biol., 149(7):1513–1526.

Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., and Giaume, C. (2008). Astroglial
metabolic networks sustain hippocampal synaptic transmission. Science, 322(5907):1551–
1555.

Roux, L., Benchenane, K., Rothstein, J. D., Bonvento, G., and Giaume, C. (2011). Plasticity
of astroglial networks in olfactory glomeruli. Proc. Natl. Acad. Sci. USA.

Roxin, A., Riecke, H., and Solla, S. A. (2004). Self-sustained activity in a small-world network
of excitable neurons. Phys. Rev. Lett., 92(19):198101.

Sánchez-Gutiérrez, D., Tozluoglu, M., Barry, J. D., Pascual, A., Mao, Y., and Escudero, L. M.
(2016). Fundamental physical cellular constraints drive self-organization of tissues. The
EMBO journal, 35(1):77–88.

Sasaki, T., Kuga, N., Namiki, S., Matsuki, N., and Ikegaya, Y. (2011). Locally synchronized
astrocytes. Cereb. Cortex.

Scemes, E. and Giaume, C. (2006). Astrocyte calcium waves: What they are and what they
do. Glia, 54(7):716–725.

Scemes, E. and Spray, D. C. (2012). Extracellular K+ and astrocyte signaling via connexin and
pannexin channels. Neurochem. Res., 37(11):2310–2316.

31



Scemes, E., Suadicani, S. O., and Spray, D. C. (2000). Intercellular communication in spinal
cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium
wave propagation. J. Neurosci., 20(4):1435–1445.

Schipke, C. G., Boucsein, C., Ohlemeyer, C., Kirchhoff, F., and Kettenmann, H. (2002). Astro-
cyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J., 16(2):255–257.

Sherman, A., Smith, G. D., Dai, L., and Miura, R. M. (2001). Asymptotic analysis of buffered
calcium diffusion near a point source. SIAM Journal on Applied Mathematics, 61(5):1816–
1838.

Shuai, J. W. and Jung, P. (2003). Selection of intracellular calcium patterns in a model with
clustered Ca2+ release channels. Phys. Rev. E, 67(3):031905.

Sirnes, S., Kjenseth, A., Leithe, E., and Rivedal, E. (2009). Interplay between PKC and the
MAP kinase pathway in connexin43 phosphorylation and inhibition of gap junction intercel-
lular communication. Biochem Biophys Res Commun, 382(1):41–45.

Skupin, A., Kettenmann, H., Winkler, U., Wartenberg, M., Sauer, H., Tovey, S. C., Taylor,
C. W., and Falcke, M. (2008). How does intracellular Ca2+ oscillate: by chance or by clock?
Biophys. J., 94:2404–2411.

Sneyd, J., Charles, A. C., and Sanderson, M. J. (1994). A model for the propagation of
intracellular calcium waves. Am. J. Physiol., 266(35):C293–C302.

Sneyd, J., Keizer, J., and Sanderson, M. J. (1995a). Mechanisms of calcium oscillations and
waves: a quantitative analysis. The FASEB Journal, 9(14):1463–1472.

Sneyd, J. and Sherratt, J. (1997). On the propagation of calcium waves in an inhomogeneous
medium. SIAM J. Appl. Math., 57(1):73–94.

Sneyd, J., Wetton, B. T. R., Charles, A. C., and Sanderson, M. J. (1995b). Intercellular
calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am.
J. Physiol., 268(37):C1537–C1545.

Sneyd, J., Wilkins, M., Strahonja, A., and Sanderson, M. J. (1998). Calcium waves and os-
cillations driven by an intercellular gradient of inositol (1, 4, 5)-trisphosphate. Biophysical
Chemistry, 72(1):101–109.

Stamatakis, M. and Mantzaris, N. V. (2006). Modeling of ATP-mediated signal transduction
and wave propagation in astrocytic cellular networks. J. Theor. Biol., 241:649–668.

Suadicani, S. O., Flores, C. E., Urban-Maldonado, M., Beelitz, M., and Scemes, E. (2004). Gap
junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y
receptor activation. Glia, 48(3):217–229.

Sul, J.-Y., Orosz, G., Givens, R. S., and Haydon, P. G. (2004). Astrocytic connectivity in the
hippocampus. Neuron Glia Biol., 1(1):3–11.

Sun, W., McConnell, E., Pare, J.-F., Xu, Q., Chen, M., Peng, W., Lovatt, D., Han, X., Smith,
Y., and Nedergaard, M. (2013). Glutamate-dependent neuroglial calcium signaling differs
between young and adult brain. Science, 339(6116):197–200.

Tang, Y. and Othmer, H. (1994). A model of calcium dynamics in cardiac myocytes based on
the kinetics of ryanodine-sensitive calcium channels. Biophys. J., 67:2223–2235.

32



Tattini, L., Olmi, S., and Torcini, A. (2012). Coherent periodic activity in excitatory erdös-renyi
neural networks: The role of network connectivity. Chaos, 22(2):023133.

Theodosis, D. T., Poulain, D. A., and Oliet, S. H. R. (2008). Activity-dependent structural and
functional plasticity of astrocyte-neuron interactions. Physiol. Rev., 88(3):983–1008.

Tian, G. F., Takano, T., Lin, J. H.-C., Wang, X., Bekar, L., and Nedergaard, M. (2006).
Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse
brain. Adv. Drug Deliver. Rev., 58(7):773–787.

Ullah, G., Jung, P., and Cornell-Bell, A. H. (2006a). Anti-phase calcium oscillations in astro-
cytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell calcium, 39(3):197–208.

Ullah, G., Jung, P., and Cornell-Bell, A. H. (2006b). Anti-phase calcium oscillations in astro-
cytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell calcium, 39(3):197–208.

Wallach, G., Lallouette, J., Herzog, N., De Pittà, M., Ben Jacob, E., Berry, H., and Hanein,
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