1,832 research outputs found
Multi-Factor Impact Analysis of Agricultural Production in Bangladesh with Climate Change
Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario
‘Special agents’ trigger social waves in giant honeybees (Apis dorsata)
Giant honeybees (Apis dorsata) nest in the open and have therefore evolved a variety of defence strategies. Against predatory wasps, they produce highly coordinated Mexican wavelike cascades termed ‘shimmering’, whereby hundreds of bees flip their abdomens upwards. Although it is well known that shimmering commences at distinct spots on the nest surface, it is still unclear how shimmering is generated. In this study, colonies were exposed to living tethered wasps that were moved in front of the experimental nest. Temporal and spatial patterns of shimmering were investigated in and after the presence of the wasp. The numbers and locations of bees that participated in the shimmering were assessed, and those bees that triggered the waves were identified. The findings reveal that the position of identified trigger cohorts did not reflect the experimental path of the tethered wasp. Instead, the trigger centres were primarily arranged in the close periphery of the mouth zone of the nest, around those parts where the main locomotory activity occurs. This favours the ‘special-agents’ hypothesis that suggest that groups of specialized bees initiate the shimmering
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Effects of Brood Pheromone Modulated Brood Rearing Behaviors on Honey Bee (Apis mellifera L.) Colony Growth
A hallmark of eusociality is cooperative brood care. In most social insect systems brood rearing labor is divided between individuals working in the nest tending the queen and larvae, and foragers collecting food outside the nest. To place brood rearing division of labor within an evolutionary context, it is necessary to understand relationships between individuals in the nest engaged in brood care and colony growth in the honey bee. Here we examined responses of the queen, queen-worker interactions, and nursing behaviors to an increase in the brood rearing stimulus environment using brood pheromone. Colony pairs were derived from a single source and were headed by open-mated sister queens, for a total of four colony pairs. One colony of a pair was treated with 336 µg of brood pheromone, and the other a blank control. Queens in the brood pheromone treated colonies laid significantly more eggs, were fed longer, and were less idle compared to controls. Workers spent significantly more time cleaning cells in pheromone treatments. Increasing the brood rearing stimulus environment with the addition of brood pheromone significantly increased the tempo of brood rearing behaviors by bees working in the nest resulting in a significantly greater amount of brood reared
Inhibition of Atrogin-1/MAFbx Mediated MyoD Proteolysis Prevents Skeletal Muscle Atrophy In Vivo
Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed
Mutant Versions of the S. cerevisiae Transcription Elongation Factor Spt16 Define Regions of Spt16 That Functionally Interact with Histone H3
In eukaryotic cells, the highly conserved FACT (FAcilitates Chromatin Transcription) complex plays important roles in several chromatin-based processes including transcription initiation and elongation. During transcription elongation, the FACT complex interacts directly with nucleosomes to facilitate histone removal upon RNA polymerase II (Pol II) passage and assists in the reconstitution of nucleosomes following Pol II passage. Although the contribution of the FACT complex to the process of transcription elongation has been well established, the mechanisms that govern interactions between FACT and chromatin still remain to be fully elucidated. Using the budding yeast Saccharomyces cerevisiae as a model system, we provide evidence that the middle domain of the FACT subunit Spt16 – the Spt16-M domain – is involved in functional interactions with histone H3. Our results show that the Spt16-M domain plays a role in the prevention of cryptic intragenic transcription during transcription elongation and also suggest that the Spt16-M domain has a function in regulating dissociation of Spt16 from chromatin at the end of the transcription process. We also provide evidence for a role for the extreme carboxy terminus of Spt16 in functional interactions with histone H3. Taken together, our studies point to previously undescribed roles for the Spt16 M-domain and extreme carboxy terminus in regulating interactions between Spt16 and chromatin during the process of transcription elongation
Regional differences in awareness and attitudes regarding genetic testing for disease risk and ancestry
Little is known about the lay public’s awareness and attitudes concerning genetic testing and what factors influence their perspectives. The existing literature focuses mainly on ethnic and socioeconomic differences; however, here we focus on how awareness and attitudes regarding genetic testing differ by geographical regions in the US. We compared awareness and attitudes concerning genetic testing for disease risk and ancestry among 452 adults (41% Black and 67% female) in four major US cities, Norman, OK; Cincinnati, OH; Harlem, NY; and Washington, DC; prior to their participation in genetic ancestry testing. The OK participants reported more detail about their personal ancestries (p = 0.02) and valued ancestry testing over disease testing more than all other sites (p < 0.01). The NY participants were more likely than other sites to seek genetic testing for disease (p = 0.01) and to see benefit in finding out more about one’s ancestry (p = 0.02), while the DC participants reported reading and hearing more about genetic testing for African ancestry than all other sites (p < 0.01). These site differences were not better accounted for by sex, age, education, self-reported ethnicity, religion, or previous experience with genetic testing/counseling. Regional differences in awareness and attitudes transcend traditional demographic predictors, such as ethnicity, age and education. Local sociocultural factors, more than ethnicity and socioeconomic status, may influence the public’s awareness and belief systems, particularly with respect to genetics
Queen mandibular pheromone: questions that remain to be resolved
The discovery of ‘queen substance’, and the subsequent identification and synthesis of keycomponents of queen mandibular pheromone, has been of significant importance to beekeepers and to thebeekeeping industry. Fifty years on, there is greater appreciation of the importance and complexity of queenpheromones, but many mysteries remain about the mechanisms through which pheromones operate. Thediscovery of sex pheromone communication in moths occurred within the same time period, but in this case,intense pressure to find better means of pest management resulted in a remarkable focusing of research activityon understanding pheromone detection mechanisms and the central processing of pheromone signals in themoth. We can benefit from this work and here, studies on moths are used to highlight some of the gaps in ourknowledge of pheromone communication in bees. A better understanding of pheromone communication inhoney bees promises improved strategies for the successful management of these extraordinary animals
- …