321 research outputs found

    The ‘Staying Calm’ programme : an evaluation of the impact of group work on children’s emotional resiliency, behaviour, anger control and social problem solving skills

    Get PDF
    Staying Calm’ is a small group programme designed to promote emotional skills, anger control and social problem solving skills in children. This study outlines an evaluation of the programme completed with 48 Year 5 and 6 children in two schools within a large shire county in the Midlands. The study begins by examining previous research and literature relevant to children’s emotional and social skills. A range of concepts and interventions that influence children’s emotional literacy, regulation, competence and resilience are discussed and anger is used as an example of the ways in which regulation of a specific emotion can be understood and promoted within schools. A randomised controlled trial design is used to evaluate the effects of the programme upon measures of children’s emotional ‘resiliency’ (using the Resiliency Scales, Prince Embury, 2007), behaviour (using teacher versions of the Strengths and Difficulties Questionnaire, Goodman, 1997) and teachers’ and parents’ views of children’s anger control, social skills and problem solving (using questionnaires designed for the ‘Staying Calm’ programme, Clifford & Davies, 2009). Results from the study show that ‘Staying Calm’ had a statistically significant positive impact upon teachers’ perceptions of children’s overall behaviour difficulties, peer relationship problems and prosocial skills. Teacher ratings of conduct problems showed a significant improvement for the children who had not taken part in the intervention. There was no evidence of a statistically significant impact on children’s perceptions of their ‘resiliency’ skills or adults’ ratings of emotional symptoms, hyperactivity, anger control and social skills. The results are discussed in relation to the material presented in the Literature Review and are examined in relation to implications for future provision and research. The study concludes with critical reflections upon the researcher’s personal approach to the study and choice of methodology

    Double-stranded RNA technology to control insect pests : current status and challenges

    Get PDF
    Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in pest insects, leading to toxic effects, has surfaced as a promising new control strategy in the past decade. While the first commercial RNAi-based products are currently coming to market, the application against a wide range of insect species is still hindered by a number of challenges. In this review, we discuss the current status of these RNAi-based products and the different delivery strategies by which insects can be targeted by the RNAi-triggering double-stranded RNA (dsRNA) molecules. Furthermore, this review also addresses a number of physiological and cellular barriers, which can lead to decreased RNAi efficacy in insects. Finally, novel non-transgenic delivery technologies, such as polymer or liposomic nanoparticles, peptide-based delivery vehicles and viral-like particles, are also discussed, as these could overcome these barriers and lead to effective RNAi-based pest control

    Double-stranded RNA technology to control insect pests : current status and challenges

    Get PDF
    Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in pest insects, leading to toxic effects, has surfaced as a promising new control strategy in the past decade. While the first commercial RNAi-based products are currently coming to market, the application against a wide range of insect species is still hindered by a number of challenges. In this review, we discuss the current status of these RNAi-based products and the different delivery strategies by which insects can be targeted by the RNAi-triggering double-stranded RNA (dsRNA) molecules. Furthermore, this review also addresses a number of physiological and cellular barriers, which can lead to decreased RNAi efficacy in insects. Finally, novel non-transgenic delivery technologies, such as polymer or liposomic nanoparticles, peptide-based delivery vehicles and viral-like particles, are also discussed, as these could overcome these barriers and lead to effective RNAi-based pest control

    Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges

    Get PDF
    Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in pest insects, leading to toxic effects, has surfaced as a promising new control strategy in the past decade. While the first commercial RNAi-based products are currently coming to market, the application against a wide range of insect species is still hindered by a number of challenges. In this review, we discuss the current status of these RNAi- based products and the different delivery strategies by which insects can be targeted by the RNAi-triggering double-stranded RNA (dsRNA) molecules. Furthermore, this review also addresses a number of physiological and cellular barriers, which can lead to decreased RNAi efficacy in insects. Finally, novel non-transgenic delivery technologies, such as polymer or liposomic nanoparticles, peptide-based delivery vehicles and viral- like particles, are also discussed, as these could overcome these barriers and lead to effective RNAi-based pest control

    Implementing the sterile insect technique with RNA interference – a review

    Get PDF
    RNA interference (RNAi) of insect pests is reviewed and its potential for implementing Sterile Insect Technique (SIT)-related control is considered. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster and Homo sapiens. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM system for targeting populations of insects for control purposes, if RNA interference (RNAi) effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics and differing methods of double stranded (ds)RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defense systems, such as toxic pH, that would otherwise attenuate the potential for RNAi

    Preparation and Use of a Yeast shRNA Delivery System for Gene Silencing in Mosquito Larvae

    Get PDF
    The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the dengue and Zika virus vector Aedes aegypti and the primary African malaria vector Anopheles gambiae. RNA interference (RNAi) has facilitated gene silencing experiments in both of these disease vector mosquito species and could one day be applied as a new method of vector control. Here, we describe a procedure for the genetic engineering of Saccharomyces cerevisiae (baker’s yeast) that express short hairpin RNA (shRNA) corresponding to mosquito target genes of interest. Following cultivation, which facilitates inexpensive propagation of shRNA, the yeast is inactivated and prepared in a ready-to-use dry tablet formulation that is fed to mosquito larvae. Ingestion of the yeast tablets results in effective larval target gene silencing. This technically straightforward and affordable technique may be applicable to a wide variety of mosquito species and potentially to other arthropods that feed on yeast

    Scavenger Receptor Mediates Systemic RNA Interference in Ticks

    Get PDF
    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks

    Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manduca sexta Genes by Plant Mediated RNA Interference

    Get PDF
    Background: RNAi can be achieved in insect herbivores by feeding them host plants stably transformed to express double stranded RNA (dsRNA) of selected midgut-expressed genes. However, the development of stably transformed plants is a slow and laborious process and here we developed a rapid, reliable and transient method. We used viral vectors to produce dsRNA in the host plant Nicotiana attenuata to transiently silence midgut genes of the plant’s lepidopteran specialist herbivore, Manduca sexta. To compare the efficacy of longer, undiced dsRNA for insect gene silencing, we silenced N. attenuata’s dicer genes (NaDCL1- 4) in all combinations in a plant stably transformed to express dsRNA targeting an insect gene. Methodology/Principal Findings: Stable transgenic N. attenuata plants harboring a 312 bp fragment of MsCYP6B46 in an inverted repeat orientation (ir-CYP6B46) were generated to produce CYP6B46 dsRNA. After consuming these plants, transcripts of CYP6B46 were significantly reduced in M. sexta larval midguts. The same 312 bp cDNA was cloned in an antisense orientation into a TRV vector and Agro-infiltrated into N. attenuata plants. When larvae ingested these plants, similar reductions in CYP6B46 transcripts were observed without reducing transcripts of the most closely related MsCYP6B45. We used this transient method to rapidly silence the expression of two additional midgut-expressed MsCYPs. CYP6B46 transcripts were further reduced in midguts, when the larvae fed on ir-CYP6B46 plants transiently silenced for tw
    corecore