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Abstract

The mosquito genome projects facilitated research in new facets of mosquito biology, including 

functional genetic studies in the dengue and Zika virus vector Aedes aegypti and the primary 

African malaria vector Anopheles gambiae. RNA interference (RNAi) has facilitated gene 

silencing experiments in both of these disease vector mosquito species and could one day be 

applied as a new method of vector control. Here, we describe a procedure for the genetic 

engineering of Saccharomyces cerevisiae (baker’s yeast) that express short hairpin RNA (shRNA) 

corresponding to mosquito target genes of interest. Following cultivation, which facilitates 

inexpensive propagation of shRNA, the yeast is inactivated and prepared in a ready-to-use dry 

tablet formulation that is fed to mosquito larvae. Ingestion of the yeast tablets results in effective 

larval target gene silencing. This technically straightforward and affordable technique may be 

applicable to a wide variety of mosquito species and potentially to other arthropods that feed on 

yeast.
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1. Introduction

Blood feeding Aedes and Anopheles vector mosquitoes transmit disease-causing pathogens 

that result in hundreds of thousands of human deaths each year. Dengue, a leading cause of 

morbidity in the tropics, Zika, a public health emergency of international concern, as well as 

yellow fever and chikungunya, result from infections with arboviruses transmitted through 

the bites of Aedes mosquitoes [1]. The global incidence of dengue has increased 
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dramatically, with over 400 million estimated cases occurring each year [2]. Cases of Zika, 

which has been linked to severe birth defects and neurological disorders, are currently 

occurring in many countries in the Americas, and Zika has rapidly spread to previously 

unaffected geographic areas [3]. Malaria results from infection with Plasmodium spp. 
parasites, which are transmitted to people through the bites of infected Anopheles 
mosquitoes, including the primary African vector Anopheles gambiae [4]. Despite the 

devastating global impact of mosquito-borne illnesses on human health, effective means of 

preventing and treating these diseases are lacking, and mosquito control is presently the best 

method of disease prevention.

In recent years, advances in the genetic engineering of mosquitoes have made the potential 

for using transgenic vector control strategies a reality [5–7], challenging researchers to 

identify novel gene targets for vector control and additional methods of manipulating 

mosquito gene function. Altering gene expression during development, which proved useful 

for generation of the female-flightless control intervention [5], may promote the elucidation 

of novel mosquito control strategies. However, to date, the functions of very few genes have 

been characterized during disease vector mosquito development. RNA interference (RNAi), 

initially discovered in C. elegans [8], has facilitated characterization of gene function in a 

wide variety of organisms, including insects [9, 10]. The RNAi pathway is initiated by Dicer, 

which cleaves long dsRNA into short 21–25 nucleotide-long small interfering RNAs 

(siRNAs) that function as sequence-specific interfering RNA molecules. siRNAs silence 

genes that are complementary in sequence by promoting transcript turnover, cleavage, and 

disruption of translation [10]. Although most mosquito researchers use longer (300–400 bp) 

dsRNA molecules for RNAi experiments, the short length of custom siRNAs and their short 

hairpin RNA (shRNA) counterparts facilitates design of interfering RNA with less potential 

for off-site targeting. It is also possible to confirm gene silencing phenotypes by performing 

experiments with multiple siRNAs that recognize different target sites within a gene of 

interest. Moreover, if siRNAs were to one day be used as insecticides, the development of 

multiple siRNA insecticides to silence the targeted gene will be useful for combating 

resistance resulting from a point mutation in any single target site. Additionally, the use of 

short sequences facilitates the design of interfering RNA molecules that recognize target 

sites that are not found in non-target organisms, but which are conserved in multiple 

mosquito species.

Although RNAi does not generate heritable germline mutations, it offers several advantages 

that may be of utility. First, through management of the timing of siRNA/shRNA delivery, 

researchers can control the time at which gene silencing initiates. This advantage can be 

used to overcome challenges such as developmental lethality or sterility, issues which can 

hinder both the production and maintenance of strains bearing heritable mutations. 

Moreover, genetic engineering of non-model insects is still a relatively expensive and labor-

intensive process. Thus, although the degree of gene silencing by RNAi can vary depending 

on the gene targeted, the tissue type, and also from subject to subject, RNAi is still 

frequently used for functional genetics studies in mosquitoes and other insects [9, 10]. 

Several different interfering RNA delivery strategies have been implemented in developing 

mosquitoes. For example, we have successfully used microinjection to deliver siRNAs for 

silencing of developmental genes in A. aegypti embryos, larvae, and pupae [11–18]. 
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However, this labor-intensive delivery strategy, which requires both technical skill and a 

microinjection setup, cannot be extended to the field. Although ingestion-based strategies do 

not work in all insect species, notably Drosophila melanogaster, RNAi through oral delivery 

promotes gene silencing in a variety of different insects, including mosquitoes [9, 19, 20, 21, 

22, 23, 24]. For example, soaking mosquitoes in interfering RNA solution, which they 

ingest, can induce gene silencing [19, 20, 22, 23, 24], and this convenient technique requires 

little equipment or labor. Chitosan nanoparticle-mediated interfering RNA delivery also 

effectively silences genes in A. gambiae [22] and A. aegypti larvae [23, 24]. However, while 

soaking and chitosan/siRNA methodology facilitate relatively affordable laboratory studies 

and require little equipment or labor [15], the present costs of RNA synthesis may still be a 

concern in large-scale laboratory and field applications.

The use of microbes facilitates affordable RNA propagation through microbe cultivation. For 

example, Escherichia coli strains engineered to produce double stranded (dsRNA) molecules 

targeting several genes of interest have generated successful gene silencing when fed to A. 
aegypti [25, 26] and A. gambiae [27] larvae. We have also engineered Saccharomyces 
cerevisiae (baker’s yeast), a model organism that is genetically tractable and inexpensive to 

culture, to produce shRNA corresponding to target sequences in several mosquito genes of 

interest [26, 27]. Yeast, which is added to both chitosan nanoparticles [15] and E. coli pellets 

[25] for larval feeding assays, is a strong odorant attractant and a source of nutrition for 

laboratory-bred mosquito larvae. Therefore, S. cerevisiae, unlike E. coli or chitosan, can 

serve both as the RNA delivery system and directly as the bait. Moreover, if RNAi were to 

one day be introduced as a mechanism for mosquito control, it seems likely that yeast, a 

natural product that is used in food and beverage production across the globe, could be a 

microbe that is readily accepted by users and stakeholders. Our laboratory studies 

demonstrate that yeast interfering RNA strains, which can function as larvicides, effectively 

silence genes in both Aedes [26] and Anopheles [27] larvae. Moreover, we have developed a 

procedure for production of ready-to-use dried and inactivated yeast interfering RNA tablets, 

a formulation which facilitates laboratory studies and that could one day promote the 

seamless integration of these larvicides into mosquito control programs. Importantly, 

laboratory trials demonstrate that the larvicidal capacity of this yeast is maintained even 

when the microbes are heat-killed [26, 27,], an important advantage given that additional 

regulatory approvals are often required for the feeding of living recombinant organisms to 

live animals in the laboratory, as well as in the field. S. cerevisiae has been cultivated 

worldwide for thousands of years, and this technology, which is readily scaled, can be 

adapted in most laboratories using the methodology for recombinant yeast production (Steps 

3.1 and 3.2 below), yeast culturing (Step 3.3) and tablet preparation (Step 3.4), larval 

feeding assays (Step 3.5), and confirmation of gene silencing (Steps 3.6 and 3.7) described 

herein.

2. Materials

2.1 Equipment:

1. Horizontal gel electrophoresis system.

2. Microwave oven.
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3. Gel imaging system.

4. Nanodrop or comparable spectrophotometer.

5. Shaker incubator.

6. Microcentrifuge (i.e. Eppendorf 5415D or a comparable model).

7. High speed refrigerated centrifuge (i.e. Eppendorf 5810R plus or a comparable 

model).

8. Water bath (a shaking bath is preferred, though not required for Step 3.7).

9. Heat block.

10. Vortex.

11. Incubator with good outward ventilation.

12. Micropipetters.

13. Ice bucket.

14. Racks for holding microfuge and centrifuge tubes.

15. Dissection microscope.

16. qRT-PCR machine (if detecting silencing via qRT-PCR, Step 3.6).

17. Rocking platform shaker or nutator (if detecting silencing via in situ 
hybridization, Step 3.7).

18. Cell spreader.

19. Bunsen burner.

2.2 Construction of shRNA expression vector:

Molecular grade reagents and ultrapure water should be used to prepare sterile solutions and 

media in sections 2.2 – 2.6.

1. Shuttle vector: Use of the pRS426 GPD yeast shuttle vector permits constitutive 

expression of inserts cloned into the multiple cloning site downstream of a GPD 
promoter and upstream of a cyc1 terminator [28]. pRS426 has an ampicillin 

resistance marker for selection in E. coli, in which all cloning experiments are 

performed. The pRS426 URA3 marker facilitates selection of S. cerevisiae that 

have been successfully transformed with the construct.

2. Custom oligonucleotides encoding the shRNA transcript; store annealed 

oligonucleotides at −20° C.

3. T4 DNA ligase and buffer stored at −20° C.

4. LB media: 10 g tryptone, 5 g yeast extract, 10 g NaCl (add 15 g of bacto-agar for 

LB plates). Bring the volume to 1000 ml with ultrapure water, pH to 7.5, then 

autoclave and store at 4° C. E. coli DH5α competent cells transformed with the 
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pRS426 shRNA expression plasmid are grown at 37° C on standard LB media 

containing 100 μg/mL ampicillin.

5. Plastics: Sterile petri dishes, 1.5 mL microfuge tubes, 10 ml culture tubes.

6. Plasmid miniprep kit.

7. Restriction enzymes corresponding to the pRS426 GPD multiple cloning site 

(stored at −20° C); we typically use the BamHI (5’) and XhoI (3’) sites.

8. Agarose (stored at room temperature).

9. 50x TAE buffer: 242.2g Tris base, 57.1 ml glacial acetic acid, 18.6g EDTA, and 

ultrapure water to volume of 1 L with ultrapure water. Stored at room 

temperature and diluted 1:50 with ultrapure water for 1x working concentration.

10. Ethidium bromide (10 mg/ml in ultrapure water). Stored at 4° C and dilute 1:20 

for gel electrophoresis.

11. Sterile 500 mL Erlenmeyer flask.

12. Sequencing primers M13F 5’GTAAAACGACGGCCAGT3′ and M13R 

5′CACACAGGAAACAGCTATGACCAT3′; store at −20° C.

2.3 Yeast transformation, culturing, and preparation of dried inactivated tablets:

1. S. cerevisiae strain BY4742 (genotype MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) 

[29].

2. 10x Lithium acetate (1 M in ultrapure water). Filter sterilized and stored at 4° C.

3. 50% PEG 3350 in ultrapure water. Filter sterilized, aliquoted, wrapped in 

parafilm, and stored at 4° C.

4. Salmon sperm DNA (2 mg/mL in ultrapure water); should be phenol chloroform 

extracted, sheared, and stored at - 20° C. Heat-denature prior to use in 

transformation.

5. Standard YPD media: 20 g bacto peptone, 10 g yeast extract, and water to 900 

mL volume. The solution should be autoclaved, then cooled to the touch prior to 

the addition of 100 mL sterile 20% glucose solution and storage at 4° C.

6. Petri dishes (sterile).

7. Synthetic complete media with dextrose lacking uracil (SCD-ura): 1.7g of yeast 

nitrogen base, 5 g ammonium sulfate, and 0.77g complete supplement mixture 

lacking uracil (CSM-ura). For plates, add 20 g of agar. Bring the volume to 

900mL with ultrapure water and autoclave. Once the media has cooled to the 

touch, add 100mL of sterile 20% glucose solution to the cooled media. Store 

media plates at 4° C for up to one month.

8. Tubes: Sterile 1.5 ml and 2 ml microfuge tubes, 10 ml culture tubes, and 50 ml 

centrifuge tubes.

9. Sterile 1 L Erlenmeyer flasks.
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2.4 Mosquito strains, rearing, and recombinant yeast feeding assays.

1. Maintain A. gambiae M strain or other strains of interest according to standard 

lab practice or as described [30, 31].

2. Maintain A. aegypti Liverpool IB12 or other strains of interest according to 

standard lab practice or as previously described [31].

3. Membrane Feeding System (i.e. Hemotek Ltd.; replaces vertebrate animals for 

blood feeding mosquitoes) and commercially purchased blood (i.e. defibrinated 

sheep’s blood; store at 4° C).

4. 500 mL plastic cups and tray in which to place the cups.

5. Petri dish lid or mesh to cover cups (holes should be small enough to prevent 

adult escape).

6. Rubber bands to secure mesh to cups.

2.5 Detection of target gene silencing by qRT-PCR:

1. Trizol reagent (Invitrogen); stored at 4° C.

2. High capacity RNA to cDNA Kit (i.e. Applied Biosystems kit); stored at −20° C.

3. SYBR green I PCR kit (i.e. Applied Biosystems kit); stored at 4° C.

4. Sterile PCR tubes.

2.6 Detection of target gene silencing by whole mount in situ hybridization:

1. PEM: 34.63 g of PIPES disodium salt, 10 ml of 0.2 M EGTA, and 1 mL of 1M 

MgSO4. Add ultrapure water and mix for 20 min, then adjust pH to 7.0 with 

HCl. Bring to 1L volume and filter through a 0.22 μm filter. Store this solution at 

4° C for up to 1 year. To prepare PEM-F, dilute 37% formaldehyde 1:10 in PEM 

just prior to use.

2. DIG-labeled riboprobe prepared with DIG Labeling Kit (SP6/T7, Roche Life 

Science); stored at −20° C.

3. Hybridization solution (Hyb): 25 mL deionoized formamide, 12.5 ml 20x SSC, 

2.5 mg heparin, 50 μL Tween-20. Adjust the pH to 5.0 using HCl. Bring the final 

volume to 50 mL with sterile ultrapure water and store at −20° C.

4. Hyb-DNA-SDS: 14.85 ml Hyb solution with 150 μl of 10 mg/ml sonicated 

salmon sperm DNA. Store at −20° C; just prior to use, warm the Hyb-DNA 

solution and add SDS to a final concentration of 0.3%.

5. 10x PBS: 11.9 g Na2HPO4, 2.23 g NaH2PO4 (anhydrous), and 102.2 g NaCl. 

Bring to 1 L total volume with ultrapure water and the pH adjusted to 7.4. 

Autoclave and store at room temperature. Dilute to 1x working concentration 

prior to use.

6. PT: PBS and 0.1% Triton X-100 stored at room temperature.
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7. PTw: PBS and 0.1% Tween-20 stored at room temperature.

8. Detergent solution: 5 ml 10% SDS, 250 μl Tween-20, 5 mL 0.5 M Tris-HCl (pH 

7.5), 100 μl 0.5 M EDTA (pH 8), and 7.5 ml 1 M NaCl. Add ultrapure water to 

50 mL and store at room temperature.

9. AP Buffer and color reaction solution: 250 μl 1M MgCl2, 5 mL 1 M NaCl, 5 mL 

1M Tris (pH 9.5), 50 μl Tween-20, and ultrapure water to 50 mL. Prepare fresh at 

room temperature just prior to use. For the color reaction, add 20 μl NBT-BCIP 

solution (Roche) to 1 mL of AP buffer and use immediately.

10. Glycerol solution: 50% and 70% glycerol solutions are prepared with ultrapure 

glycerol in PBS. Store at room temperature.

3. Methods

3.1. Preparation of yeast transformation vector

1. Select shRNA target sites and design shRNAs according to standard lab practice. 

Scramble the sequence of a knockdown shRNA target site to design negative 

control shRNA that does not correspond to any mosquito gene. The shRNA 

sequence designer tool [32] will facilitate design of DNA oligonucleotides 

corresponding to each target sequence and allows the user to add restriction 

enzyme overhangs to facilitate downstream cloning (see Note 1). DNA 

oligonucleotides corresponding to the custom shRNA sequences can be 

purchased through a number of reputable vendors.

2. DNA oligonucleotides corresponding to the shRNA sequence are annealed and 

cloned into the multiple cloning site of the pRS426 shuttle vector [28] (see Note 

2) using standard double digestion and cloning techniques (see Notes 3 and 4). 

Confirm positive colonies by harvesting and double digestion of the plasmid 

DNA followed by agarose gel electrophoresis to confirm inserts. The correct 

sequences of positive inserts should be verified through sequencing with the 

M13F or M13R primer (see Note 5).

3. 2 Yeast transformation:

A timeline outlining the sequencing of steps 3.2 through 3.7 is presented in Fig. 1.

1. Inoculate 2–5 mL of liquid YPD with S. cerevisiae strain BY4742 and incubate 

with shaking overnight at 30°C and 250 rpm.

2. Use 600 μl of the pre-culture (which should be at an OD600 of ~0.2) to inoculate 

25 ml of fresh YPD. Shake at 250 rpm and 30°C until the OD600 reaches ~0.8 

(approximately 3–5 hours).

3. Harvest the culture in a sterile 50 ml centrifuge tube spun at 1000 x g for 5 min.

4. Pour off the medium and resuspend the cells in 25 ml of sterile water. Centrifuge 

again at 1000 x g for 5 min.
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5. Pour off the water and resuspend the cells in 1.0 ml of 0.1M (1x) LiAc. Transfer 

the cell suspension to a 1.5 ml microfuge tube.

6. Pellet the cells at 8000 rpm for 30 sec and remove the LiAc with a micropipette.

7. Resuspend the cells to a final volume of ~250 μl by adding 200 μl of 0.1 M (1X) 

LiAc (2 × 109 cells/ml).

8. Boil the salmon sperm DNA for 5 min and quickly chill it on ice (see Note 6).

9. Gently mix the cell suspension and pipette 50 μl samples into microfuge tubes. 

Pellet the cells and remove the LiAc with a micropipette.

10. Prepare the transformation mixture, which consists of 240 μl PEG (50% w/v) 

(see Note 7), 36 μl 1.0 M LiAc, 50 μl heat-denatured salmon sperm DNA (2.0 

mg/ml), ~3.0 μg of plasmid DNA, and sterile ultrapure water to a total volume of 

360 μl.

11. Add the transformation mixture to the cell pellet. Vortex each tube briefly until 

the cells are resuspended.

12. Heat shock the cells in a water bath at 42°C for 15–20 min.

13. Microfuge at 6,000–8,000 rpm for 30 sec and remove the supernatant with a 

micropipette.

14. Pipette 600 μl of sterile water into the tube and resuspend the pellet by pipetting 

it up and down gently.

15. Plate the cells on SCD-ura media plates.

16. Incubate the plates for 2 – 4 days at 30° C to recover transformants. Re-streak 

yeast from an individual clone onto a new SCD-ura media plate (see Note 8).

3.3 Yeast culturing and preparation of dried inactivated yeast tablets:

1. To prepare yeast from each desired strain (experimental or control), inoculate a 2 

ml culture of yeast SCD-ura media placed in a sterile 10 ml culture tube (see 
Notes 9 and 10). Allow the culture to grow for 24 hrs in a shaker incubator set at 

30° C and 250 rpm. The culture tube should be placed at a 45° angle.

2. Transfer the 2 ml culture into a 1 L flask with 250 ml SCD-ura media and allow 

it to grow at 30° C and 250 rpm in a shaker incubator until the OD600 of the 

culture is between 2.5 – 3.0 (see Notes 11 and 12).

3.4 Preparation of dried inactivated yeast tablets:

1. Transfer the 250 ml culture into five 50 ml centrifuge tubes, each with 50 ml of 

culture. Spin the balanced tubes for 20 min at 4000 rpm (see Note 13). Decant 

the supernatant.

2. Heat kill the yeast by incubating the tubes containing the pellets in a water bath 

set to 70° C for 5 min; once heat killed, transfer (see Note 14) the pellets into 2 

ml Eppendorf tubes (see Note 15).
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3. Spin the 2 ml tubes at ~13000 rpm for 2 min and remove the supernatant entirely 

by pipetting. Place these pellets in a 30° C incubator that has good outward 

ventilation (i.e. it must constantly suck moist air from the chamber). 

Alternatively, a food desiccator can be used for the drying process. Dry the 

pellets for approximately 48 hrs, when a gap between the pellet and the side of 

the tube is noted and the pellet can be dislodged from the tube (see Note 16). The 

final weight of each yeast tablet (shown in Fig. 2A) averages ~85 mg (~1.6 × 

10^10 cells). For best results, proceed immediately to the feeding assays (section 

3.5). If necessary, the pellets can be stored at −80° or −20° C for 1–2 weeks.

3.5 Feeding mosquito larvae with recombinant yeast tablets:

1. Prepare 16 oz plastic cups with 50 ml of sterile ultrapure water and label each 

cup appropriately. For each biological replicate experiment, prepare at least three 

cups per strain of yeast used (see Note 17).

2. Place one control or experimental 85 mg yeast pellet in each cup.

3. Add 20 freshly hatched age-synchronized mosquito larvae (see Note 18) to each 

of these cups (Fig. 3). Cover each cup with mesh secured with a rubber band or 

with the lid of a petri dish. Put the cups in a plastic tray to catch any spills and 

place the tray in an insectary maintained at 26.5° C with relative humidity of 

~85% and a light-dark cycle of 12h. If an insectary is not available, then an 

incubator can be used.

4. Examine the transcript levels as discussed below and evaluate other phenotypic 

changes at the desired developmental time points. For example, when evaluating 

yeast interfering RNA larvicides, larval death can be monitored (Figs. 2B, 3). For 

analysis of some phenotypes, it may be useful to supplement the fourth instar 

(L4) larval diet with an additional source of nutrition, which will allow the larvae 

to progress to the pupal stage more quickly (see Note 19). If adult phenotypes are 

to be assessed, be sure to move the cups into an adult cage.

5. It is recommended that at least three biological replicate feeding experiments are 

performed for gene silencing quantification and for analysis of each phenotype to 

be assessed.

3.6 Confirmation of gene silencing by qRT-PCR:

1. Gene silencing can be confirmed with qRT-PCR, which can be performed 

according to your standard laboratory procedure or using the method 

summarized below, which has worked in our hands [11, 22, 23]. Perform and 

analyze qRT-PCR assays with at least three yeast feeding biological replicates, 

each with at least 10 pooled control vs. experimental larvae (we typically assess 

L4 animals) as described [11, 22, 23]. For analysis of a particular tissue type/

body part (i.e. the brain), perform qRT-PCR following dissection to recover the 

tissue of interest (see Mysore et al. [24] for example and see Note 20).

2. Extract total RNA with Trizol reagent according to the manufacturer’s 

instructions. Use the RNA to prepare cDNA with the High Capacity RNA to 
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cDNA Kit (Applied Biosystems) following directions supplied by the 

manufacturer.

3. Perform qRT-PCR using the SYBR green I PCR kit according to the 

manufacturer’s instructions in conjunction with an Applied BioSystems Step 

One Plus Real-Time PCR System or a comparable model. For each biological 

replicate experiment, all PCR assays should be run in triplicate. Quantification of 

results is performed through comparison to reference standard transcript levels 

[11]. Transcript quantification data can be statistically analyzed using a t-test.

3.7 Confirmation of gene silencing by whole mount in situ hybridization:

1. In situ hybridization permits spatial confirmation of silencing in specific tissue or 

cell types. Representative results are shown in Fig. 4A1, A2, B1, B2, and C1, 

C2). Assess tissues prepared from 20 animals (we typically use L4 animals) in at 

least three biological replicate yeast feeding experiments. Execute in situ 
hybridization according to standard lab practice or in accordance with the 

Haugen et al. [33] protocol, which is summarized below.

2. Synthesize digoxygenin-labeled antisense and sense control riboprobes 

according to standard lab practice or using the DIG RNA Labeling and detection 

kit according to the manufacturer’s directions, which are explained in further 

detail by Patel [34] (see Note 21).

3. A detailed protocol for tissue fixation and preparation is included in Clemons et 

al. [31]. In summary, larval tissues of interest are dissected and then fixed for 20 

min in PEM-F (see Note 22).

4. Fixed tissues are then processed for detection of mRNA transcripts according to 

the method below, which was described previously in greater detail [33]. The 

fixed tissues can remain in eppendorf tubes throughout the procedure. Proceed 

with a 5 min rinse in PBS and 2× 10 min rinses in PTw. Use 1 ml wash volumes 

unless otherwise indicated.

5. After removing the PTw, add 1 ml of detergent solution (see Note 23) and 

incubate the tissues for 30 min with gentle rocking. After 30 min, remove the 

detergent solution and rinse the tissues 2× 10 min in PTw.

6. After removing the PTw, rinse the tissues 1× 5 min with 500 μl of 50% PTw-50% 

Hyb solution. Then replace the 50% PTw-50% Hyb with 500 μl of Hyb solution 

and incubate for 10 min. While the tissues are incubating in Hyb, boil an aliquot 

of the Hyb-DNA-SDS solution for 10 min in a heat block or boiling bath to 

denature the DNA; store this solution on ice while initiating step 7.

7. Following removal of the Hyb solution from the tissues, add 100 μl of denatured 

Hyb-DNA-SDS solution to the tissues and place the tubes in a floating rack 

located in a 60° C water bath for 60 min. A shaking bath is preferred, though not 

absolutely required, for blocking, overnight hybridization, and post-hybridization 

washes. Toward the end of the 60 min incubation, heat denature the riboprobe 
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suspended in Hyb-DNA-SDS solution by boiling it for 5 min in a heat block or 

boiling bath; store briefly on ice while initiating the next step.

8. Remove the Hyb-DNA-SDS blocking solution from the tissues and replace it 

with the riboprobe/Hyb-DNA-SDS solution. Gently stir the mixture with a 

pipette tip, and then place the tubes back in the 60° C water bath and continue 

with hybridization overnight.

9. In the morning, perform the following wash steps in the 60° C water bath using 1 

ml volumes of solutions prewarmed in the 60° C bath: 1× 30 min with Hyb 

solution; 5× 30 min with PTw. After the last PTw wash, bring the tubes to room 

temperature and wash for an additional 30 min with PT.

10. Remove the PT wash solution and add 300 μl of AP-conjugated anti-DIG 

antibody diluted 1:2000 in PT. Gently stir the mixture with your pipette tip and 

then incubate overnight at 4° C.

11. The next day, rinse the tissue 4× 30 min with PT at room temperature.

12. After removing the PT, rinse the tissue 3× 5 min in AP buffer (see Note 24).

13. Remove the AP wash buffer and add 300 μl of AP-NBT-BCIP solution. The 

color reaction should be performed in the dark, monitoring the progress of the 

reaction by occasional visualization of the tissues with a dissection microscope. 

The reaction can take anywhere from several minutes to several hours to 

complete.

14. Stop the progress of the color reaction by removing the AP-NBT-BCIP and 

rinsing the tissues 4× 15 min with PT.

15. Remove the PT wash solution and rinse the tissues 1× 5 min with PBS. 

Following removal of the PBS solution, add 500 μl of 50% glycerol, which can 

be replaced after 60 min with 70% glycerol. Clear the tissues at room 

temperature overnight prior to mounting and analyzing the tissues in 70% 

glycerol. Silencing can be evaluated through transcript quantification analyses, 

which are performed through analysis of mean gray values (average signal 

intensity over the selected area) calculated for digoxigenin-labeled transcript 

signal in control or experimental brains [26, 27] (Fig. 4A3, B3, C3). These 

analyses can be performed with Adobe Photoshop or comparable image 

processing software. Results should be combined from at least three biological 

replicate experiments, each with tissues prepared from 10–20 animals. Transcript 

quantification data can be statistically analyzed using a t-test.

4. Notes:

1. We use the 5’ BamHI and 3’ XhoI sites in the in the pRS426 vector and include 

sticky ends for cloning into these sites. Before using these sites, be sure to check 

that there are no internal cut sites for these enzymes in your shRNA expression 

insert.
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2. If longer dsRNA molecules (200–400 bp) are preferred, then it is likely that the 

dsRNA expression system described by Murphy et al. [35] would be compatible 

with the yeast cultivation and mosquito oral feeding protocols described herein. 

However, for reasons outlined in the Introduction, we have opted to use shRNA 

in our own studies.

3. Although not necessary for most laboratory applications, one can also insert 

shRNA expression cassettes into vectors that are compatible with integration of 

the cassettes into the yeast genome. We have pursued this for strains that will be 

used in field trials [26], as it dispenses with the use of plasmids with antibiotic 

resistance markers and reduces the risk of horizontal transfer to other species.

4. Likewise, although not necessary for most laboratory applications, shRNA 

expression constructs can be placed under the control of an inducible promoter 

(i.e. Gal1), which allows for high levels of shRNA expression after integration of 

the expression cassettes into the yeast genome [26].

5. We have found it challenging to clone shRNA expression cassettes, presumably 

because a DNA oligonucleotide may bind to itself rather than to the 

complementary strand when the oligos are annealed prior to cloning. Likewise, 

although sequencing of the shRNA expression cassette clones is critical, it can 

also be challenging to sequence through hairpin-encoding sequence due to 

complications with secondary structure. We have combatted both these issues by 

testing multiple clones (sometimes 20 or more are necessary).

6. Although E. coli is readily transformed with double stranded plasmid DNA, 

yeast requires single stranded carrier DNA to enhance plasmid uptake.

7. PEG is prone to evaporation, which can alter the PEG:water ratio and lead to 

poor transformation efficiency. It may be helpful to make the PEG solution fresh 

for each transformation or to make it in small aliquots that are sealed tightly with 

parafilm.

8. Frozen glycerol stocks should be prepared from each transformant yeast strain. If 

you will be working with the same clones over an extended period, then it is 

helpful to prepare two frozen samples from each strain, one that researchers will 

open more frequently, and one that is set aside for long-term permanent storage. 

It is also useful to store the DNA plasmid in case the yeast needs to be re-

transformed.

9. For the best results, use yeast that has been plated from a frozen stock on SCD-

ura media plates (poured generously so that the media doesn’t dry and crack) 

within the past week.

10. If you initiate the pre-culture in the late afternoon, it will be ready at 

approximately the same time the following day.

11. The culture will likely need to be diluted 1:5 using SCD-ura medium prior to 

taking the OD600 reading. The culture will likely need to grow for 42–48 hrs to 

reach an appropriate OD600 reading.
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12. If the OD600 reading is less than 2.5, then let the culture grow longer. Do not 

harvest the culture too early.

13. If you are using a centrifuge that can spin at a higher speed, then it may be 

possible to reduce the length of this step.

14. It is important to use a 2 mL eppendorf tube rather than a 1.5 mL tube at this 

step. The 2 mL tube has a larger conical surface area that permits better drying of 

the yeast.

15. It is useful to perform this step in several batches, as it is easiest to transfer a 

warmed pellet.

16. It is important to dry the yeast thoroughly. When the yeast pellet is under-dried, 

it can become sticky, which makes it hard to remove from the tube and more 

difficult to use in feeding assays. Failure to dry the pellet thoroughly may also 

decrease the shelf life of the yeast interfering RNA.

17. You may wish to plan your experiments so that the larvae do not pupariate over 

the weekend. In our insectary, this means that we would begin experiments on a 

Tuesday or a Wednesday.

18. For best results, hatch Aedes eggs in deoxygenated water, which facilitates 

synchronized hatching of diapaused eggs. To deoxygenate the water, it can be 

autoclaved, or the eggs can be hatched in water placed under vacuum pressure. 

A. aegypti eggs that are less than one month old typically hatch within 30 min at 

25 psi.

19. For Aedes, during L4, we typically add 100 μl of a 60 g/L suspension of bovine 

liver powder in sterile ultrapure water (store at 4° C). For A. gambiae, during L4, 

we have sprinkled ~10 mg of a 1:1 mixture of liver powder and nutritional yeast 

at the water surface. Other larval foods can likely be substituted depending on 

the preferred laboratory rearing protocol.

20. Examination of gene expression can be complicated because larvae will grow at 

different rates depending on how much food is eaten by each individual animal, 

and expression of many developmental genes is very dynamic. For some 

developmental genes, we find that expression levels differ widely even in 

individual control or untreated animals that were age-synchronized at the 

beginning of the experiment. Preparation of a specific tissue rather than use of 

whole animals may improve results and can be worth the effort. For some larval 

transcripts, we have found that in situ hybridization experiments can detect 

significant levels of silencing which correspond to strong and penetrant 

phenotypes, but that qRT-PCR experiments have at times failed to detect.

21. If multiple transcripts are expressed, be sure to synthesize a probe that 

corresponds to the transcript(s) of interest.

22. For some tissues, modification of the fixation solution and an overnight fixation 

procedure will yield better results. For example, we fix larval brains overnight at 

4° C in 1x PBS containing 1% Triton-X and 7.4 % formaldehyde.
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23. This SDS detergent step substitutes for the proteinase K treatment steps found in 

many in situ hybridization protocols and gives more consistent results than 

enzymatic treatment of tissues for permeabilization.

24. It is important to perform this step as described. We have noted that rinsing the 

tissues too quickly can significantly lengthen color reaction times.
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Fig. 1. Experimental Timeline.
The sequence of experimental events over an ~11 day experimental timeline is presented for 

Steps 3.2 through 3.7, which initiate following preparation of the shRNA expression 

construct (Step. 3.1) and conclude with analysis of silencing in fourth instar larvae.
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Fig. 2. Yeast interfering RNA tablets induce significant A. gambiae larval death.
Dried inactivated yeast interfering RNA tablets (A; penny shown for scale) were prepared 

and fed to 20 A. gambiae larvae. Significant death was observed in larvae fed with yeast 

expressing shRNA hairpins corresponding to the Sac1, lrc, and otk genes as compared to 

larvae fed control yeast interfering RNA tablets. These data were compiled from three 

biological replicate experiments (n = 240 larvae total/condition) and analyzed by ANOVA 

with Tukey’s multiple comparison test. ***=p<0.001 as compared to control-fed larvae; 

error bars denote standard error of the mean (SEM). Reproduced through open access from 

reference [27].
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Fig. 3. Mosquito larval oral feeding assays.
Larvae placed in a beaker consume yeast interfering RNA tablets. This procedure can be 

used to assay the impact of gene silencing on various larval phenotypes, including larval 

death.
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Fig. 4. Confirmed silencing of the Sac1, lrc, and otk genes in the A. gambiae larval brain by dried 
inactivated yeast interfering RNA tablets.
Significantly lower Sac1 (A1–A3), lrc (B1–B3), and otk (C1–C3) transcript levels were 

detected through in situ hybridization in the L4 brains of larvae fed dried inactivated yeast 

interfering RNA tablets corresponding to the Sac1 (A1), lrc (B1), and otk (C1) genes vs. 

animals fed with control yeast interfering RNA tablets (A2, B2, C2). For each probe, results 

from three biological replicate experiments were compiled (n=85 total brains from larvae 

treated with the Sac1 interfering RNA tablet, n=80 total brains from larvae treated with the 

lrc interfering RNA tablet, and n=80 brains from larvae treated with the otk interfering RNA 

tablets; n=40 brains from control-treated larvae/per experiment). Data were evaluated by the 

Student’s t-test. All brains are oriented dorsal upward in this figure. LAL: Larval antennal 

lobe; OF: Olfactory foramen; OL: Optic lobe; SOG: Sub-oesophageal ganglion; SuEG: 
Supra-oesophageal ganglion. Reproduced through open access from reference [27].
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