1,035 research outputs found

    Ground State Bands of the E(5) and X(5) Critical Symmetries Obtained from Davidson Potentials through a Variational Procedure

    Get PDF
    Davidson potentials of the form β2+β04/β2\beta^2 +\beta_0^4/\beta^2, when used in the original Bohr Hamiltonian for γ\gamma-independent potentials bridge the U(5) and O(6) symmetries. Using a variational procedure, we determine for each value of angular momentum LL the value of β0\beta_0 at which the derivative of the energy ratio RL=E(L)/E(2)R_L=E(L)/E(2) with respect to β0\beta_0 has a sharp maximum, the collection of RLR_L values at these points forming a band which practically coincides with the ground state band of the E(5) model, corresponding to the critical point in the shape phase transition from U(5) to O(6). The same potentials, when used in the Bohr Hamiltonian after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedure leading to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical point of the U(5) to SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for nuclear energy spectra is obtained as a by-product.Comment: LaTeX, 12 pages, 4 postscript figure

    Influence of thermal fluctuations on quantum phase transitions in one-dimensional disordered systems: Charge density waves and Luttinger liquids

    Full text link
    The low temperature phase diagram of 1D weakly disordered quantum systems like charge or spin density waves and Luttinger liquids is studied by a \emph{full finite temperature} renormalization group (RG) calculation. For vanishing quantum fluctuations this approach is amended by an \emph{exact} solution in the case of strong disorder and by a mapping onto the \emph{Burgers equation with noise} in the case of weak disorder, respectively. At \emph{zero} temperature we reproduce the quantum phase transition between a pinned (localized) and an unpinned (delocalized) phase for weak and strong quantum fluctuations, respectively, as found previously by Fukuyama or Giamarchi and Schulz. At \emph{finite} temperatures the localization transition is suppressed: the random potential is wiped out by thermal fluctuations on length scales larger than the thermal de Broglie wave length of the phason excitations. The existence of a zero temperature transition is reflected in a rich cross-over phase diagram of the correlation functions. In particular we find four different scaling regions: a \emph{classical disordered}, a \emph{quantum disordered}, a \emph{quantum critical} and a \emph{thermal} region. The results can be transferred directly to the discussion of the influence of disorder in superfluids. Finally we extend the RG calculation to the treatment of a commensurate lattice potential. Applications to related systems are discussed as well.Comment: 19 pages, 7 figure

    Gamma-Ray spectroscopy in the vicinity of Zr-108

    Get PDF
    F. Browne et al.; 4 págs.; 2 figs.; Presented at the Zakopane Conference on Nuclear Physics “Extremes of the Nuclear Landscape”, Zakopane, Poland, August 31–September 7, 2014; PACS numbers: 21.10.Re, 21.10.Tg, 23.20.Js, 27.60.+jThe half-lives of 2+121+ states were measured for 102,104102,104Zr and 106,108106,108Mo to test a new implementation of a LaBr33(Ce) array at the RIBF, RIKEN, Japan. The nuclei of interest were produced through the fission of a 345~MeV/nucleon 238238U beam and selected by the BigRIPS separator. Fission fragments were implanted into the WAS3ABi active stopper, surrounding which, 18 LaBr33(Ce) detectors provided fast γγ-ray detection. Timing between the LaBr33(Ce) array and plastic scintillators allowed for the measurement of half-lives of low-lying states. The preliminary results, which agree with literature values, are presented along with experimental details.This work was supported in part by the UK STFC, the UK NMO and D.O.E. grant No. DE-FG02-91ER-40609Peer Reviewe

    Orbital-selective Mott transitions: Heavy fermions and beyond

    Full text link
    Quantum phase transitions in metals are often accompanied by violations of Fermi liquid behavior in the quantum critical regime. Particularly fascinating are transitions beyond the Landau-Ginzburg-Wilson concept of a local order parameter. The breakdown of the Kondo effect in heavy-fermion metals constitutes a prime example of such a transition. Here, the strongly correlated f electrons become localized and disappear from the Fermi surface, implying that the transition is equivalent to an orbital-selective Mott transition, as has been discussed for multi-band transition-metal oxides. In this article, available theoretical descriptions for orbital-selective Mott transitions will be reviewed, with an emphasis on conceptual aspects like the distinction between different low-temperature phases and the structure of the global phase diagram. Selected results for quantum critical properties will be listed as well. Finally, a brief overview is given on experiments which have been interpreted in terms of orbital-selective Mott physics.Comment: 29 pages, 4 figs, mini-review prepared for a special issue of JLT

    Inter-observer and inter-examination variability of manual vertebral bone attenuation measurements on computed tomography

    Get PDF
    Objective: To determine inter-observer and inter-examination variability of manual attenuation measurements of the vertebrae in low-dose unenhanced chest computed tomography (CT). Methods: Three hundred and sixty-seven lung cancer screening trial participants who underwent baseline and repeat unenhanced low-dose CT after 3 months because of an indeterminate lung nodule were included. The CT attenuation value of the first lumbar vertebrae (L1) was measured in all CTs by one observer to obtain inter-examination reliability. Six observers performed measurements in 100 randomly selected CTs to determine agreement with limits of agreement and Bland-Altman plots and reliability with intraclass correlation coefficients (ICCs). Reclassification analyses were performed using a threshold of 110 HU to define osteoporosis. Results: Inter-examination reliability was excellent with an ICC of 0.92 (p < 0.001). Inter-examination limits of agreement ranged from -26 to 28 HU with a mean difference of 1 ± 14 HU. Inter-observer reliability ICCs ranged from 0.70 to 0.91. Inter-examination variability led to 11.2 % reclassification of participants and inter-observer variability led to 22.1 % reclassification. Conclusions: Vertebral attenuation values can be manually quantified with good to excellent inter-examination and inter-observer reliability on unenhanced low-dose chest CT. This information is valuable for early detection of osteoporosis on low-dose chest CT. Key Points: • Vertebral attenuation values can be manually quantified on low-dose unenhanced CT reliably.• Vertebral attenuation measurements may be helpful in detecting subclinical low bone density.• This could become of importance in the detection of osteoporosis

    Complementary methods to investigate the development of clogging within a horizontal sub-surface flow tertiary treatment wetland

    Get PDF
    A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems

    Cell specific microvesicles vary with season and disease predisposition in healthy and previously laminitic ponies

    Get PDF
    Microvesicles are small (up to 1 μm) vesicles found in plasma and other bodily fluids. They are recognised as part of the normal system of inter-cellular communication but altered numbers are also used as biomarkers of disease. Microvesicles have not been studied in detail in the horse but may be relevant to diseases such as laminitis. Identification of equine cell specific microvesicles was performed by developing a panel of cross reactive antibodies to use in flow cytometry to detect microvesicles of platelet, leucocyte and endothelial origin in plasma from healthy ponies and those predisposed to laminitis. The total number and proportion of microvesicles from the different cell types varied with season and there were more annexin V positive endothelial MV in non laminitic ponies compared to previously laminitic ponies. Development of this antibody panel and the technique for measuring microvesicles in the horse opens a new field for further investigation of these important structures in equine health and disease

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
    • …
    corecore