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Abstract

Davidson potentials of the formβ2+β4
0/β

2, when used in the original Bohr Hamiltonian forγ -independent potentials bridg
the U(5) and O(6) symmetries. Using a variational procedure, we determine for each value of angular momentumL the value of
β0 at which the derivative of the energy ratioRL = E(L)/E(2) with respect toβ0 has a sharp maximum, the collection ofRL
values at these points forming a band which practically coincides with the ground state band of the E(5) model, corre
to the critical point in the shape phase transition from U(5) to O(6). The same potentials, when used in the Bohr Ham
after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedu
to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical poin
U(5) to SU(3) shape phase transition. A new derivation of the Holmberg–Lipas formula for nuclear energy spectra is
as a by-product.
 2004 Elsevier B.V.
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1. Introduction

The recently introduced E(5) [1] and X(5) [2] mo
els are supposed to describe shape phase transitio
atomic nuclei, the former being related to the transit
from U(5) (vibrational) to O(6) (γ -unstable) nuclei
and the latter corresponding to the transition from U
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n

to SU(3) (rotational) nuclei. In both cases the origi
Bohr collective Hamiltonian [3] is used, with an infi
nite well potential in the collectiveβ-variable. Separa
tion of variables is achieved in the E(5) case by ass
ing that the potential is independent of the collect
γ -variable, while in the X(5) case the potential is a
sumed to be of the form u(β)+ u(γ ). We are going to
refer to these two cases as “the E(5) framework” a
“the X(5) framework”, respectively. The selection
an infinite well potential in theβ-variable in both case
is justified by the fact that the potential is expected
be flat around the point at which a shape phase tra
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tion occurs. Experimental evidence for the occurre
of the E(5) and X(5) symmetries in some appropri
nuclei is growing ([4,5] and [6,7], respectively).

In the present Letter we examine if the cho
of the infinite well potential is the optimum one fo
the description of shape phase transitions. For
purpose, we need one-parameter potentials which
span the U(5)–O(6) region in the E(5) framework,
well as the U(5)–SU(3) region in the X(5) framewor
It turns out that the exactly soluble [8,9] Davids
potentials [10]

(1)u(β)= β2 + β4
0

β2 ,

whereβ0 is the position of the minimum of the po
tential, do possess this property. Taking into acco
the fact that various physical quantities should cha
most rapidly at the point of the shape phase transi
[11], we locate for each value of the angular mom
tum L the value ofβ0 for which the rate of chang
of the ratioRL = E(L)/E(2), a widely used measur
of nuclear collectivity, is maximized. It turns out th
the collection ofRL ratios formed in this way in the
case of a potential independent of theγ -variable cor-
respond to the E(5) model, while in the case of
u(β) + u(γ ) potential lead to the X(5) model, thu
proving that the choice of the infinite well potenti
made in Refs. [1,2] is the optimum one. The va
ational procedure used here is analogous to the
used in the framework of the variable moment of in
tia (VMI) model [12], where the energy is minimize
with respect to the (angular momentum depend
moment of inertia for each value of the angular m
mentumL separately.

In Section 2 the E(5) case is considered, while
X(5) case is examined in Section 3, in which a n
derivation of the Holmberg–Lipas formula [13] fo
nuclear energy spectra is obtained as a by-prod
Finally, Section 4 contains a discussion of the pres
results and plans for further work.

2. Davidson potentials in the E(5) framework

The original Bohr Hamiltonian [3] is

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin3γ

∂

∂γ
sin3γ

∂

∂γ
− 1

4β2

∑
k=1,2,3

Q2
k

sin2(γ − 2
3πk)

]

(2)+ V (β,γ ),

whereβ and γ are the usual collective coordinat
describing the shape of the nuclear surface,Qk (k =
1,2,3) are the components of angular momentum,
B is the mass parameter.

Assuming that the potential depends only on
variable β , i.e., V (β,γ ) = U(β), one can procee
to separation of variables in the standard way [3,1
using the wavefunctionΨ (β,γ, θi) = f (β)Φ(γ, θi),
whereθi (i = 1,2,3) are the Euler angles describin
the orientation of the deformed nucleus in space.

In the equation involving the angles, the eigenv
ues of the second order Casimir operator of SO
occur, having the formΛ = τ (τ + 3), where τ =
0,1,2, . . . is the quantum number characterizing t
irreducible representations (irreps) of SO(5), cal
the “seniority” [15]. This equation has been solved
Bes [16].

The “radial” equation can be simplified by intro
ducing [1] reduced energiesε = 2B

h̄2 E and reduced

potentialsu= 2B
h̄2 U , leading to

(3)

[
− 1

β4

∂

∂β
β4 ∂

∂β
+ τ (τ + 3)

β2 + u(β)

]
f (β)= εf (β).

When plugging the Davidson potentials of Eq. (
in the above equation, theβ4

0/β
2 term is combined

with the τ (τ + 3)/β2 term appearing there and th
equation is solved exactly [8,9], the eigenfunctio
being Laguerre polynomials of the form

(4)

Fτ
n (β)=

[
2n!

�(n+ p+ 5
2)

]1/2

βpL
p+ 3

2
n

(
β2)e−β2/2,

where �(n) stands for the�-function, while p is
determined by [8]

(5)p(p+ 3)= τ (τ + 3)+ β4
0,

leading to

(6)p = −3

2
+

[(
τ + 3

2

)2

+ β4
0

]1/2

.
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The energy eigenvalues are then [8,9] (inh̄ω = 1
units)

En,τ = 2n+ p+ 5

2

(7)= 2n+ 1+
[(
τ + 3

2

)2

+ β4
0

]1/2

.

For β0 = 0 the original solution of Bohr [3], which
corresponds to a 5-dimensional (5D) harmonic os
lator characterized by the symmetry U(5)⊃ SO(5)⊃
SO(3) ⊃ SO(2) [17], is obtained. The values of a
gular momentumL contained in each irrep of SO(5
(i.e., for each value ofτ ) are given by the algorithm
[18] τ = 3ν∆ + λ, whereν∆ = 0, 1, . . . is the missing
quantum number in the reduction SO(5)⊃ SO(3), and
L= λ,λ+ 1, . . . ,2λ− 2,2λ (with 2λ− 1 missing).

The levels of the ground state band are charac
ized byL = 2τ andn = 0. Then the energy levels o
the ground state band are given by

(8)E0,L = 1+ 1

2

[
(L+ 3)2 + 4β4

0

]1/2
,

while the excitation energies of the levels of t
ground state band relative to the ground state are

E0,L,exc=E0,L −E0,0

(9)

= 1

2

([
(L+ 3)2 + 4β4

0

]1/2 − [
9+ 4β4

0

]1/2)
.

Foru(β) being a 5D infinite well

(10)u(β)=
{

0, if β � βW,

∞, for β > βW

one obtains the E(5) model of Iachello [1] in which t
eigenfunctions are Bessel functionsJτ+3/2(z) (with
z = βk, k = √

ε), while the spectrum is determine
by the zeros of the Bessel functions

(11)Eξ,τ = h̄2

2B
k2
ξ,τ , kξ,τ = xξ,τ

βW
,

where xξ,τ is the ξ th zero of the Bessel functio
Jτ+3/2(z). The spectra of the E(5) and Davidson ca
become directly comparable by establishing the
mal correspondencen= ξ − 1.

It is instructive to consider the ratios

(12)RL = E0,L −E0,0

E0,2 −E0,0
,

where the notationEn,L is used.
Table 1
RL ratios (defined in Eq. (12)) for the ground state band of
Davidson potentials in the E(5) framework (Eq. (8)) for differe
values of the parameterβ0, compared to the O(6) exact results

L RL RL RL
β0 = 5 β0 = 10 O(6)

4 2.494 2.500 2.500
6 4.475 4.498 4.500
8 6.935 6.996 7.000

10 9.861 9.991 10.000
12 13.242 13.483 13.500
14 17.064 17.471 17.500
16 21.312 21.954 22.000
18 25.969 26.930 27.000
20 31.020 32.398 32.500

For β0 = 0 it is clear that the original vibrationa
model of Bohr [3] (withR4 = 2) is obtained, while
for largeβ0 the O(6) limit of the Interacting Boso
Model (IBM) [18] (with R4 = 2.5) is approached [8]
The latter fact can be seen in Table 1, where theRL
ratios for two different values of the parameterβ0
are shown, together with the O(6) predictions (wh
correspond toE(L) = AL(L + 6), with A constant
[19]). It is clear that the O(6) limit is approached asβ0
is increased, the agreement being already quite g
atβ0 = 5.

It is useful to consider the ratiosRL, defined above
as a function ofβ0. As seen in Fig. 1, where the ratio
R4, R12 andR20 are shown, these ratios increase w
β0, the increase becoming very steep at some v
β0,max of β0, where the first derivativedRL/(dβ0)

reaches a maximum value, while the second deriva
d2RL/(dβ

2
0) vanishes. Numerical results forβ0,max

are shown in Table 2, together with the values ofRL
occurring at these points, which are compared to
RL ratios occurring in the ground state band of
E(5) model [1]. Very close agreement of the valu
determined by the procedure described above with
E(5) values is observed in Table 2, as well as in Fig
where these ratios are also shown, together with
corresponding ratios of the U(5) and O(6) limits.

The work performed in this section is reminisce
of a variational procedure. Wishing to determine
critical point in the shape phase transition from U(5)
O(6), one chooses a potential (the Davidson poten
with a free parameter (β0), which helps in covering the
whole range of interest. Indeed, forβ0 = 0 the U(5)
picture is obtained, while large values ofβ0 lead to the
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Fig. 1. TheRL ratios (defined in Eq. (12)) forL = 4,12,20 and
their derivativesdRL/dβ0 vs. the parameterβ0, calculated using
Davidson potentials (Eq. (1)) in the E(5) framework. TheRL curves
also demonstrate the evolution from the U(5) symmetry (on the
to the O(6) limit (on the right). See Section 2 for further details.

Table 2
Parameter valuesβ0,max where the first derivative of the energ
ratios RL (defined in Eq. (12)) in the E(5) framework has
maximum, while the second derivative vanishes, together with
RL ratios obtained at these values (labeled by “var”) and
corresponding ratios of the E(5) model, for several values of
angular momentumL

L β0,max RL RL
var E(5)

4 1.421 2.185 2.199
6 1.522 3.549 3.590
8 1.609 5.086 5.169

10 1.687 6.793 6.934
12 1.759 8.667 8.881
14 1.825 10.705 11.009
16 1.888 12.906 13.316
18 1.947 15.269 15.799
20 2.004 17.793 18.459

O(6) limit. One then needs a physical quantity wh
can serve as a “measure” of collectivity. For this p
pose one considers the ratiosRL, encouraged by th
Fig. 2. Values of the ratioRL (defined in Eq. (12)) obtained
through the variational procedure (labeled by “var”) using David
potentials in the E(5) framework, compared to the values prov
by the U(5), O(6), and E(5) models. See Section 2 for further det

fact that these ratios are well-known indicators of c
lectivity in nuclear structure [20]. Since at the critic
point (if any) one expects the collectivity to chan
very rapidly, one looks, for eachRL ratio separately
for the value of the parameter at which the change
RL is maximum. Indeed, the first derivative of the ra
RL with respect to the parameterβ0 exhibits a sharp
maximum, which is then a good candidate for be
the critical point for this particular value of the angu
momentumL. TheRL values at the critical points co
responding to each value ofL form a collection, which
should correspond to the behaviour of the ground s
band of a nucleus at the critical point. The infin
well potential used in E(5) succeeds in reproducing
these “critical”RL ratios in the ground state band f
all values of the angular momentumL, without using
any free parameter. It is therefore proved that the in
finite well potential is indeed the optimum choice f
describing the ground state bands of nuclei at the
ical point of the U(5) to O(6) shape phase transition

In other words, starting from the Davidson pote
tials and using a variational procedure, according
which the rate of change of theRL ratios as a func
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tion of the parameterβ0 is maximized for each valu
of the angular momentumL separately, one forms th
collection of critical values ofRL which corresponds
to the ground state band of the E(5) model, which
supposed to describe nuclei at the critical point.

Variational procedures in which each value of t
angular momentumL is treated separately are not u
heard of in nuclear physics. An example is given
the variable moment of inertia (VMI) model [12], i
which the energy of the nucleus is minimized with
spect to the (angular momentum dependent) mom
of inertia for each value of the angular momentum s
arately. From the cubic equation obtained from t
condition, the moment of inertia is uniquely dete
mined (as a function of angular momentum) in ea
case. The collection of energy levels occurring by
ing in the energy formula the appropriate value of
moment of inertia for each value of the angular m
mentumL forms the ground state band of the nucle

Some comparison of the variational procedure u
here with the standard Ritz variational method use
quantum mechanics ([21], for example) is in place
the (simplest version of the) Ritz variational meth
a trial wave function containing a parameter is ch
sen and subsequently the energy is minimized w
respect to this parameter, thus determining the p
meter value and, after the relevant substitution,
energy value. In the present case a trial potential c
taining a parameter is chosen and subsequently
rate of change of the physical quantity (here the r
of change of the energy ratios) is maximized w
respect to this parameter, thus determining the para
ter value and, after the relevant calculation, the va
of the physical quantity (here the energy ratios). T
main similarity between the two methods is the u
of a parameter-dependent trial wave function/trial
tential, respectively. The main difference between
two methods is that in the former the relevant phy
cal quantity (the energy) is minimized with respect
the parameter, while in the latter the rate of chang
the physical quantity (the energy ratios) is maximiz
with respect to the parameter.

3. Davidson potentials in the X(5) framework

Starting again from the original Bohr Hamiltonia
of Eq. (2), one seeks solutions of the relevant Sch
dinger equation having the formΨ (β,γ, θi) =
φLK(β,γ )DL

M,K(θi), where θi (i = 1, 2, 3) are the
Euler angles,D(θi) denote Wigner functions of them
L are the eigenvalues of angular momentum, whileM

andK are the eigenvalues of the projections of an
lar momentum on the laboratory-fixedz-axis and the
body-fixedz′-axis, respectively.

As pointed out in Ref. [2], in the case in which th
potential has a minimum aroundγ = 0 one can write
the last term of Eq. (2) in the form

∑
k=1,2,3

Q2
k

sin2(γ − 2π
3 k)

(13)≈ 4

3

(
Q2

1 +Q2
2 +Q2

3

) +Q2
3

(
1

sin2γ
− 4

3

)
.

Using this result in the Schrödinger equation cor
sponding to the Hamiltonian of Eq. (2), introducin
reduced energiesε = 2BE/h̄2 and reduced potentia
u = 2BV/h̄2, and assuming that the reduced pot
tial can be separated into two terms, one depen
on β and the other depending onγ , i.e., u(β, γ ) =
u(β) + u(γ ), the Schrödinger equation can be se
rated into two equations [2], the “radial” one being[
− 1

β4

∂

∂β
β4 ∂

∂β
+ 1

4β2

4

3
L(L+ 1)+ u(β)

]
ξL(β)

(14)= εβξL(β).

When plugging the Davidson potentials of Eq. (
in this equation, theβ4

0/β
2 term of the potential is

combined with theL(L+1)/3β2 term appearing ther
and the equation is solved exactly, the eigenfuncti
being Laguerre polynomials of the form

(15)

FL
n (β)=

[
2n!

�(n+ a + 5
2)

]1/2

βaL
a+ 3

2
n

(
β2)e−β2/2,

wherea is given by

(16)a = −3

2
+

[
1

3
L(L+ 1)+ 9

4
+ β4

0

]1/2

.

The energy eigenvalues are then (inh̄ω = 1 units)

En,L = 2n+ a + 5

2

(17)= 2n+ 1+
[

1

3
L(L+ 1)+ 9

4
+ β4

0

]1/2

.
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The levels of the ground state band are charac
ized byn= 0. Then the excitation energies relative
the ground state are given by

E0,L,exc=
[

1

3
L(L+ 1)+ 9

4
+ β4

0

]1/2

(18)−
[

9

4
+ β4

0

]1/2

,

which can easily be put into the form

E′
0,L,exc= E0,L,exc

[9
4 + β4

0]1/2

(19)=
[
1+ L(L+ 1)

3(9
4 + β4

0)

]1/2

− 1,

which is the same as the Holmberg–Lipas formula [

(20)EH (L)= aH
(√

1+ bHL(L+ 1)− 1
)
,

with aH = 1

(21)bH = 1

3(9
4 + β4

0)
.

It is clear that the Holmberg–Lipas formula giv
rotational spectra for small values ofbH , at which
one can keep only the firstL-dependent term in th
Taylor expansion of the square root appearing
Eq. (20), leading to energies proportional toL(L+ 1).
From Eq. (21) it is then clear that rotational spec
are expected for large values ofβ0. This can be
seen in Table 3, where theRL ratios occurring for
two different values ofβ0 are shown, together wit
the predictions of the SU(3) limit of IBM, which

Table 3
RL ratios (defined in Eq. (12)) for the ground state band of
Davidson potentials in the X(5) framework (Eq. (17)) for differe
values of the parameterβ0, compared to the SU(3) exact results

L RL RL RL
β0 = 5 β0 = 10 SU(3)

4 3.327 3.333 3.333
6 6.967 6.998 7.000
8 11.897 11.993 12.000

10 18.087 18.317 18.333
12 25.503 25.968 26.000
14 34.102 34.941 35.000
16 43.839 45.233 45.333
18 54.665 56.841 57.000
20 66.530 69.760 70.000
correspond to the pure rotator withE(L) = AL(L+
1), where A constant [18]. The agreement to t
SU(3) results is quite good already atβ0 = 5. On the
other hand, the caseβ0 = 0 corresponds to an exact
soluble model withR4 = 2.646, which has been calle
the X(5)–β2 model [22].

It is worth remarking at this point that th
Holmberg–Lipas formula can be derived [19] by a
suming that the moment of inertiaI in the energy
expression of the rigid rotator (E(L)= L(L+ 1)/2I )
is a function of the excitation energy, i.e.,I = α +
βE(L), whereα andβ are constants, the latter b
ing proportional tobH and acquiring positive value
It is therefore clear that the Holmberg–Lipas formu
as well as the spectrum of the Davidson potentials
rived in this section, have built-in the concept of t
variable moment of inertia (VMI) model [12], accor
ing to which the moment of inertia is an increasi
function of the angular momentum.

For u(β) being a 5D infinite well potential (se
Eq. (10)) one obtains the X(5) model of Iache
[2], in which the eigenfunctions are Bessel functio
Jν(ks,Lβ) with

(22)ν =
(
L(L+ 1)

3
+ 9

4

)1/2

,

while the spectrum is determined by the zeros of
Bessel functions, the relevant eigenvalues being

(23)εβ;s,L = (ks,L)
2, ks,L = xs,L

βW
,

where xs,L is the sth zero of the Bessel functio
Jν(ks,Lβ). The spectra of the X(5) and Davidso
cases become directly comparable by establishing
formal correspondencen= s − 1.

It is useful to consider the ratiosRL, defined in the
previous section, as a function ofβ0. As seen in Fig. 3
these ratios again increase withβ0, the increase be
coming very steep at some valueβ0,max of β0, where
the first derivativedRL/(dβ0) reaches a maximum
value, while the second derivatived2RL/(dβ

2
0) van-

ishes. Numerical results forβ0,max are shown in Ta-
ble 4, together with the values ofRL occurring at these
points, which are compared to theRL ratios occurring
in the ground state band of the X(5) model [2]. Ve
close agreement of the values determined by the pr
dure described above with the X(5) values is observ
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Fig. 3. TheRL ratios (defined in Eq. (12)) forL = 4, 12, 20 and
their derivativesdRL/dβ0 vs. the parameterβ0, calculated using
Davidson potentials (Eq. (1)) in the X(5) framework. TheRL curves
also demonstrate the evolution from the X(5)–β2 symmetry (on the
left) to the SU(3) limit (on the right). See Section 3 for furth
details.

Table 4
Parameter valuesβ0,max where the first derivative of the energ
ratios RL (defined in Eq. (12)) in the X(5) framework has
maximum, while the second derivative vanishes, together with
RL ratios obtained at these values (labeled by “var”) and
corresponding ratios of the X(5) model, for several values of
angular momentumL

L β0,max RL RL
var X(5)

4 1.334 2.901 2.904
6 1.445 5.419 5.430
8 1.543 8.454 8.483

10 1.631 11.964 12.027
12 1.711 15.926 16.041
14 1.785 20.330 20.514
16 1.855 25.170 25.437
18 1.922 30.442 30.804
20 1.985 36.146 36.611
Fig. 4. Values of the ratioRL (defined in Eq. (12)) obtained
through the variational procedure (labeled by “var”) using David
potentials in the X(5) framework, compared to the values provi
by the U(5), SU(3), X(5), and X(5)–β2 models. See Section 3 fo
further details.

The work performed here is reminiscent of a va
ational procedure, as in the previous section. Wish
to determine the critical point in the shape phase tr
sition from U(5) to SU(3), one chooses a poten
(the Davidson potential) with a free parameter (β0),
which serves in spanning the range of interest.
large values ofβ0 the SU(3) limit is obtained, while
for β0 = 0 the X(5)–β2 picture is obtained [22], which
is not the U(5) limit, but it is located between U(
and X(5), on the way from U(5) to SU(3). Thus the r
gion of interest around X(5) is covered from X(5)–β2

to SU(3). Then the values ofβ0 at which the first
derivativedRL/dβ0 exhibits a sharp maximum are d
termined for each value of the angular momentumL
separately, the collection ofRL ratios at these value
of β0 forming a band, which turns out to be in ve
good agreement with the ground state band of X
the model supposed to be appropriate for describ
nuclei at the critical point in the transition from U(5
to SU(3), thus indicating that the choice of the infin
well potential used in the X(5) model is the optimu
one. The results are depicted in Fig. 4, where in a
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ev,
tion to the bands provided by the variational proced
and the X(5) model, the bands corresponding to
U(5), X(5)–β2, and SU(3) cases are shown.

4. Discussion

The main results and conclusions obtained in
present Letter are listed here:

(1) A variational procedure for determining the va
ues of physical quantities at the point of sha
phase transitions in nuclei has been suggested
ing one-parameter potentials spanning the reg
between the two limiting symmetries of intere
the parameter values at which the rate of cha
of the physical quantity becomes maximum a
determined for each value of the angular mom
tum separately and the corresponding values
the physical quantity at these parameter val
are calculated. The values of the physical qu
tity collected in this way represent its behaviour
the critical point.

(2) The method has been applied in the shape p
transition from U(5) to O(6), using one-parame
Davidson potentials [10] and considering the e
ergy ratiosRL = E(L)/E(2) within the ground
state band as the relevant physical quantity, le
ing to a band which practically coincides with th
ground state band of the E(5) model [1]. It has a
been applied in the same way in the shape ph
transition from U(5) to SU(3), leading to a ban
which practically coincides with the ground sta
band of the X(5) model [2].

(3) It should be emphasized that the application
the method was possible because the David
potentials correctly reproduce the U(5) and O
symmetries in the former case (for small a
large parameter values, respectively), as wel
the relevant X(5)–β2 [22] and SU(3) symmetrie
in the latter case (for small and large parame
values, respectively).

(4) As a by-product, a derivation of the Holmber
Lipas formula [13] has been achieved usi
Davidson potentials in the X(5) framework.

It is clearly of interest to apply the variational pr
cedure introduced here to physical quantities ot
than the energy ratios in the ground state band. En
ratios involving levels of excited bands, ratios of B(E
transition rates (both intraband and interband), and
tios of quadrupole moments are obvious choices. W
in these directions is in progress, using the David
potentials, since they possess the appropriate li
ing behaviour for small and large parameter valu
However, any other potential/Hamiltonian bridgi
the relevant pairs of symmetries (U(5)–O(6) and U(
SU(3)) should be equally appropriate.

Acknowledgements

Partial support through the NATO Collaborati
Linkage Grant PST.CLG 978799 is gratefully a
knowledged.

References

[1] F. Iachello, Phys. Rev. Lett. 85 (2000) 3580.
[2] F. Iachello, Phys. Rev. Lett. 87 (2001) 052502.
[3] A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26 (1

(1952).
[4] R.F. Casten, N.V. Zamfir, Phys. Rev. Lett. 85 (2000) 3584.
[5] N.V. Zamfir, et al., Phys. Rev. C 65 (2002) 044325.
[6] R.F. Casten, N.V. Zamfir, Phys. Rev. Lett. 87 (2001) 05250
[7] R. Krücken, et al., Phys. Rev. Lett. 88 (2002) 232501.
[8] J.P. Elliott, J.A. Evans, P. Park, Phys. Lett. B 169 (1986) 30
[9] D.J. Rowe, C. Bahri, J. Phys. A 31 (1998) 4947.

[10] P.M. Davidson, Proc. R. Soc. 135 (1932) 459.
[11] V. Werner, P. von Brentano, R.F. Casten, J. Jolie, Phys. L

B 527 (2002) 55.
[12] M.A.J. Mariscotti, G. Scharff-Goldhaber, B. Buck, Phy

Rev. 178 (1969) 1864.
[13] P. Holmberg, P.O. Lipas, Nucl. Phys. A 117 (1968) 552.
[14] L. Wilets, M. Jean, Phys. Rev. 102 (1956) 788.
[15] G. Rakavy, Nucl. Phys. 4 (1957) 289.
[16] D.R. Bes, Nucl. Phys. 10 (1959) 373.
[17] E. Chacón, M. Moshinsky, J. Math. Phys. 18 (1977) 870.
[18] F. Iachello, A. Arima, The Interacting Boson Model, Cam

bridge Univ. Press, Cambridge, 1987.
[19] R.F. Casten, Nuclear Structure from a Simple Perspec

Oxford Univ. Press, Oxford, 1990.
[20] C.A. Mallmann, Phys. Rev. Lett. 2 (1959) 507.
[21] W. Greiner, Quantum Mechanics—An Introduction, Spring

Berlin, 1989.
[22] D. Bonatsos, D. Lenis, N. Minkov, P.P. Raychev, P.A. Terzi

nucl-th/0311092, Phys. Rev. C, in press.


	Ground state bands of the E(5) and X(5) critical symmetries obtained from Davidson potentials through a variational procedure
	Introduction
	Davidson potentials in the E(5) framework
	Davidson potentials in the X(5) framework
	Discussion
	Acknowledgements
	References


