114 research outputs found
Limb reduction in squamate reptiles correlates with the reduction of the chondrocranium: A case study on serpentiform anguids
Abstract Background In vertebrates, the skull evolves from a complex network of dermal bones and cartilage?the latter forming the pharyngeal apparatus and the chondrocranium. Squamates are particularly important in this regard as they maintain at least part of the chondrocranium throughout their whole ontogeny until adulthood. Anguid lizards represent a unique group of squamates, which contains limbed and limbless forms and show conspicuous variation of the adult skull. Results Based on several emboadryonic stages of the limbless lizards Pseudopus apodus and Anguis fragilis, and by comparing with other squamates, we identified and interpreted major differences in chondrocranial anatomy. Among others, the most important differences are in the orbitotemporal region. P. apodus shows a strikingly similar development of this region to other squamates. Unexpectedly, however, A. fragilis differs considerably in the composition of the orbitotemporal region. In addition, A. fragilis retains a paedomorphic state of the nasal region. Conclusions Taxonomic comparisons indicate that even closely related species with reduced limbs show significant differences in chondrocranial anatomy. The Pearson correlation coefficient suggests strong correlation between chondrocranial reduction and limb reduction. We pose the hypothesis that limb reduction could be associated with the reduction in chondrocrania by means of genetic mechanisms
Cellular shear adhesion force measurement and simultaneous imaging by atomic force microscope
This paper presents a sensitive and fast cellular shear adhesion force measurement method using an atomic force microscope (AFM). In the work, the AFM was used both as a tool for the imaging of cells on the nano-scale and as a force sensor for the measurement of the shear adhesion force between the cell and the substrate. After the cell imaging, the measurement of cellular shear adhesion forces was made based on the different positions of the cell on the nano-scale. Moreover, different pushing speeds of probe and various locations of cells were used in experiments to study their influences. In this study, the measurement of the cell adhesion in the upper portion of the cell is different from that in the lower portion. It may reveal that the cancer cells have the metastasis tendency after cultured for 16 to 20 hours, which is significant for preventing metastasis in the patients diagnosed with early cancer lesions. Furthermore, the cellular shear adhesion forces of two types of living cancer cells were obtained based on the measurements of AFM cantilever deflections in the torsional and vertical directions. The results demonstrate that the shear adhesion force of cancer cells is twice as much as the same type of cancer cells with TRAIL. The method can also provide a way for the measurement of the cellular shear adhesion force between the cell and the substrate, and for the simultaneous exploration of cells using the AFM imaging and manipulatio
Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology
The middle ear of turtles differs from other reptiles in being separated into two distinct compartments. Several ideas have been proposed as to why the middle ear is compartmentalized in turtles, most suggesting a relationship with underwater hearing. Extant turtle species span fully marine to strictly terrestrial habitats, and ecomorphological hypotheses of turtle hearing predict that this should correlate with variation in the structure of the middle ear due to differences in the fluid properties of water and air. We investigate the shape and size of the airâfilled middle ear cavity of 56 extant turtles using 3D data and phylogenetic comparative analysis to test for correlations between habitat preferences and the shape and size of the middle ear cavity. Only weak correlations are found between middle ear cavity size and ecology, with aquatic taxa having proportionally smaller cavity volumes. The middle ear cavity of turtles exhibits high shape diversity among species, but we found no relationship between this shape variation and ecology. Surprisingly, the estimated acoustic transformer ratio, a key functional parameter of impedanceâmatching ears in vertebrates, also shows no relation to habitat preferences (aquatic/terrestrial) in turtles. We suggest that middle ear cavity shape may be controlled by factors unrelated to hearing, such as the spatial demands of surrounding cranial structures. A review of the fossil record suggests that the modern turtle ear evolved during the Early to Middle Jurassic in stem turtles broadly adapted to freshwater and terrestrial settings. This, combined with our finding that evolutionary transitions between habitats caused only weak evolutionary changes in middle ear structure, suggests that tympanic hearing in turtles evolved as a compromise between subaerial and underwater hearing
Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories
Recent advances in geometric morphometrics provide improved techniques for extraction of biological information from shape and have greatly contributed to the study of ecomorphology and morphological evolution. However, the vertebral column remains an under-studied structure due in part to a concentration on skull and limb research, but most importantly because of the difficulties in analysing the shape of a structure composed of multiple articulating discrete units (i.e. vertebrae). Here, we have applied a variety of geometric morphometric analyses to three-dimensional landmarks collected on 19 presacral vertebrae to investigate the influence of potential ecological and functional drivers, such as size, locomotion and prey size specialisation, on regional morphology of the vertebral column in the mammalian family Felidae. In particular, we have here provided a novel application of a methodâphenotypic trajectory analysis (PTA)âthat allows for shape analysis of a contiguous sequence of vertebrae as functionally linked osteological structures. Our results showed that ecological factors influence the shape of the vertebral column heterogeneously and that distinct vertebral sections may be under different selection pressures. While anterior presacral vertebrae may either have evolved under stronger phylogenetic constraints or are ecologically conservative, posterior presacral vertebrae, specifically in the post-T10 region, show significant differentiation among ecomorphs. Additionally, our PTA results demonstrated that functional vertebral regions differ among felid ecomorphs mainly in the relative covariation of vertebral shape variables (i.e. direction of trajectories, rather than in trajectory size) and, therefore, that ecological divergence among felid species is reflected by morphological changes in vertebral column shape
A general scenario of Hox gene inventory variation among major sarcopterygian lineages
<p>Abstract</p> <p>Background</p> <p><it>H</it>ox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the <it>Hox </it>genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how <it>Hox </it>gene inventory varied along the sarcopterygian lineage.</p> <p>Results</p> <p>We determined the <it>Hox </it>gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable <it>Hox </it>genes in each of the six sarcopterygian group representatives, compared to the human <it>Hox </it>gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 <it>Hox </it>genes. <it>HoxD12 </it>is absent in snakes, amphibians and probably lungfishes. <it>HoxB13 </it>is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess <it>HoxC3</it>. <it>HoxC1 </it>is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess <it>HoxA14</it>, which is only found in lobe-finned fishes to date. Our <it>Hox </it>gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of <it>HoxD12 </it>is not directly related to digit reduction.</p> <p>Conclusions</p> <p>Our newly determined <it>Hox </it>inventory data provide a more complete scenario for evolutionary dynamics of <it>Hox </it>genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar <it>Hox </it>gene inventories to animals with less derived body morphology, suggesting changes to their body morphology are likely due to other modifications rather than changes to <it>Hox </it>gene numbers. Furthermore, our results provide basis for future sequencing of the entire <it>Hox </it>clusters of these animals.</p
Lysosomes in iron metabolism, ageing and apoptosis
The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH âŒ4 to 5) that constantly fuse and divide. It receives a large number of hydrolases (âŒ50) from the trans-Golgi network, and substrates from both the cellsâ outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while ârestingâ lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place
Dysregulation of Macrophage-Secreted Cathepsin B Contributes to HIV-1-Linked Neuronal Apoptosis
Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND). The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1ADA infected human monocyte-derived macrophages (MDM) and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM) from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings provide new evidence for the role of cathepsin B in neuronal cell death induced by HIV-infected macrophages
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
Expert consensus document:Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted
- âŠ