609 research outputs found

    Rapid micromixer via ferrofluids

    Get PDF
    AbstractPerformances of a micromixer based on ferrofluids are predicted numerically. A permanent magnet is used to induce transient interactive flows between a water-based ferrofluid and water. The external magnetic field causes the ferrofluid to expand significantly and uniformly toward miscible water, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which mimic the experimental observations of Wen et al. (2009), increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is 145.8 Oe. The proposed mixing scheme not only provides an excellent mixing, even in simple microchannel, but also can be easily applied to lab-on-a-chip applications with an external permanent magnet

    Precision Localization of Lipid-Based Nanoparticles by Dual-Fluorescent Labeling for Accurate and High-Resolution Imaging in Living Cells

    Get PDF
    In nanomedicine, lipid-based nanoparticles (NPs) such as liposomes (LPs) have established an important position. Precise delineation of NP interaction with cells and detailed characterization of activity are becoming essential, which mainly rely on labeling with lipophilic fluorescent molecules and assuming stable association with NPs. However, because of label separation from NPs in (biological) media, or when processed by cells, fluorescence-based detection of an NP incorporating a single label may not necessarily indicate the actual presence of an NP but may be from the dissociated label, rendering results unreliable. Herein, flow cytometry and confocal microscopy are employed to demonstrate that to verify the localization of LPs in a cell with perfect accuracy, dual-labeling, and contemporaneous detection of both fluorescent signals in one pixel are required. This is combined with size exclusion chromatography (SEC) and mass spectrometry measurements to indicate factors involved in label dissociation, which helps to understand the possible conditions of dissociated label and NP. It is shown that determining label colocalization with, and label dissociation from, dual-labeled NPs are needed to provide accurate spatiotemporal insight into targeting destination (colocalized signals) and disintegration (separated signals) of NPs during intracellular processing and in studying payload delivery with precision in nanomedicine.</p

    A new displacement-based approach to calculate stress intensity factors with the boundary element method

    Get PDF
    The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs). The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has be-come very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM) in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes

    Boson gas in a periodic array of tubes

    Full text link
    We report the thermodynamic properties of an ideal boson gas confined in an infinite periodic array of channels modeled by two, mutually perpendicular, Kronig-Penney delta-potentials. The particle's motion is hindered in the x-y directions, allowing tunneling of particles through the walls, while no confinement along the z direction is considered. It is shown that there exists a finite Bose- Einstein condensation (BEC) critical temperature Tc that decreases monotonically from the 3D ideal boson gas (IBG) value T0T_{0} as the strength of confinement P0P_{0} is increased while keeping the channel's cross section, axaya_{x}a_{y} constant. In contrast, Tc is a non-monotonic function of the cross-section area for fixed P0P_{0}. In addition to the BEC cusp, the specific heat exhibits a set of maxima and minima. The minimum located at the highest temperature is a clear signal of the confinement effect which occurs when the boson wavelength is twice the cross-section side size. This confinement is amplified when the wall strength is increased until a dimensional crossover from 3D to 1D is produced. Some of these features in the specific heat obtained from this simple model can be related, qualitatively, to at least two different experimental situations: 4^4He adsorbed within the interstitial channels of a bundle of carbon nanotubes and superconductor-multistrand-wires Nb3_{3}Sn.Comment: 9 pages, 10 figures, submitte

    Understanding the pathways between prenatal and postnatal factors and overweight outcomes in early childhood: a pooled analysis of seven cohorts

    Get PDF
    Published online: 3 April 2023BACKGROUND/OBJECTIVES: Childhood overweight and obesity are influenced by a range of prenatal and postnatal factors. Few studies have explored the integrative pathways linking these factors and childhood overweight. This study aimed to elucidate the integrative pathways through which maternal pre-pregnancy body mass index (BMI), infant birth weight, breastfeeding duration, and rapid weight gain (RWG) during infancy are associated with overweight outcomes in early childhood from ages 3 to 5 years. SUBJECTS/METHODS: Pooled data from seven Australian and New Zealand cohorts were used (n = 3572). Generalized structural equation modelling was used to examine direct and indirect associations of maternal pre-pregnancy BMI, infant birth weight, breastfeeding duration, and RWG during infancy with child overweight outcomes (BMI z-score and overweight status). RESULTS: Maternal pre-pregnancy BMI was directly associated with infant birth weight (ÎČ 0.01, 95%CI 0.01, 0.02), breastfeeding duration ≄6 months (OR 0.92, 95%CI 0.90, 0.93), child BMI z-score (ÎČ 0.03, 95%CI 0.03, 0.04) and overweight status (OR 1.07, 95%CI 1.06, 1.09) at ages 3-5 years. The association between maternal pre-pregnancy BMI and child overweight outcomes was partially mediated by infant birth weight, but not RWG. RWG in infancy exhibited the strongest direct association with child overweight outcomes (BMI z-score: ÎČ 0.72, 95%CI 0.65, 0.79; overweight status: OR 4.49, 95%CI 3.61, 5.59). Infant birth weight was implicated in the indirect pathways of maternal pre-pregnancy BMI with RWG in infancy, breastfeeding duration, and child overweight outcomes. The associations between breastfeeding duration (≄6 months) and lower child overweight outcomes were fully mediated by RWG in infancy. CONCLUSIONS: Maternal pre-pregnancy BMI, infant birth weight, breastfeeding duration and RWG in infancy act in concert to influence early childhood overweight. Future overweight prevention interventions should target RWG in infancy, which showed the strongest association with childhood overweight; and maternal pre-pregnancy BMI, which was implicated in several pathways leading to childhood overweight.Miaobing Zheng, Kylie D. Hesketh, Peter Vuillermin, Jodie Dodd, Li Ming Wen, Louise A. Baur, Rachael Taylor, Rebecca Byrne, Seema Mihrshahi, David Burgner, Mimi L. K. Tang, and Karen J. Campbel

    Relativistic quantum effects of Dirac particles simulated by ultracold atoms

    Full text link
    Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on Quantum Dynamics of Ultracold Atom

    Lifelong Exercise Patterns and Cardiovascular Health.

    Get PDF
    OBJECTIVE: To determine the relationship between lifelong exercise dose and the prevalence of cardiovascular morbidity. PATIENTS AND METHODS: From June 1, 2011, through December 31, 2014, 21,266 individuals completed an online questionnaire regarding their lifelong exercise patterns and cardiovascular health status. Cardiovascular disease (CVD) was defined as a diagnosis of myocardial infarction, stroke, or heart failure, and cardiovascular risk factors (CVRFs) were defined as hypertension, hypercholesterolemia, or type 2 diabetes. Lifelong exercise patterns were measured over a median of 32 years for 405 patients with CVD, 1379 patients with CVRFs, and 10,656 controls. Participants were categorized into nonexercisers and quintiles (Q1-Q5) of exercise dose (metabolic equivalent task [MET] minutes per week). RESULTS: The CVD/CVRF prevalence was lower for each exercise quintile compared with nonexercisers (CVD: nonexercisers, 9.6% vs Q1: 4.4%, Q2: 2.8%, Q3: 2.4%, Q4: 3.6%, Q5: 3.9%; P<.001; CVRF: nonexercisers, 24.6% vs Q1: 13.8%, Q2: 10.2%, Q3: 9.0%, Q4: 9.4%, Q5: 12.0%; P<.001). The lowest exercise dose (Q1) significantly reduced CVD and CVRF prevalence, but the largest reductions were found at 764 to 1091 MET-min/wk for CVD (adjusted odds ratio=0.31; 95% CI, 0.20-0.48) and CVRFs (adjusted odds ratio=0.36; 95% CI, 0.28-0.47). The CVD/CVRF prevalence did not further decrease in higher exercise dose groups. Exercise intensity did not influence the relationship between exercise patterns and CVD or CVRFs. CONCLUSION: These findings demonstrate a curvilinear relationship between lifelong exercise patterns and cardiovascular morbidity. Low exercise doses can effectively reduce CVD/CVRF prevalence, but engagement in exercise for 764 to 1091 MET-min/wk is associated with the lowest CVD/CVRF prevalence. Higher exercise doses do not yield additional benefits

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore